本文為「經濟部產業技術司科技專案成果」
英國數位文化媒體暨體育部(Department for Digital, Culture, Media and Sport, DCMS)2020年9月1日發布「數位身分:政府諮詢回應」(Digital Identity: Call for Evidence Response)文件,以回應過去英國政府曾於2019年7月向各界蒐集如何為成長中的數位經濟社會建立數位身分系統之意見。依據諮詢意見之成果,英國政府計畫調修現行法規,使相關身分識別流程以最大化容許數位身分之使用,並發展有關數位身分之消費者保護立法;立法中將特別規範個人之權利、如何賠償可能產生的侵害,以及設定監督者等相關內容。數位身分策略委員會(Digital Identity Strategy Board)並提出六項原則,以加強英國之數位身分布建與政策: 隱私:當個人資料被使用時,應確保具備相關措施以保障其保密性與隱私; 透明性:當個人身分資訊於使用數位身分產品而被利用時,必須確保使用者可了解其個資被誰、因何原因,以及在何時被利用; 包容性:當人們希望或需要數位身分時即可取得。例如不備有護照或駕照等紙本文件時,對於其取得數位身分不應產生障礙; 互通性(interoperability):應設定英國之技術與運作標準,使國際與國內之使用上可互通; 比例性:使用者需求與其他因素(如隱私與安全)之考量應可平衡,使數位身分之使用可被信賴; 良好監理:數位身分標準將與政府政策與法令連結,未來之相關規範將更加明確、一致並可配合政府對於數位管制之整體策略。
90億基金挹注 生技業添活水為推動國內生技業發展,行政院開發基金審核通過90億元成立三種「生技創業種子基金」,今年將開始運作,希望發揮拋磚引玉功能,吸引異業的大型民間資金投入生技產業。而為加強BIO-IT跨領域異業科技整合,行政院近期內還要推動Mega Fund大型基金參與,建構台灣成為亞太地區最活躍的生技重鎮。 生技產業被公認為21世紀的明星產業,台灣也列為兩兆雙星產業發展計畫的重點推動項目,並提出具體執行策略與願景目標,以建構台灣為擁有亞洲區最活躍的生技創投產業、基因體研究重鎮、人體臨床試驗中心與亞熱帶花卉王國,成為國際生技與製公司進入亞洲市場的重要門戶。 不過行政院科技顧問組在立法院科技與資訊委員會備詢時指出,台灣現雖已有223家創投公司,其中61家近三年正逐漸將生技納入投資組合。可是國內的投資人對研發型生技產業仍瞭解不夠,投資在生技創投資金雖有增加,著重投資於國內技術移轉及產業化過程中的草創期資金缺口,但行政院開發基金日前已通過三個「生技創業種子基金」,金額90億元,卻還沒有開始運作,異業的大型民間資金也還沒有進入生技產業。 為強化生技政策與資源統籌,行政院決定今年設立「生技產業策略諮議委員會」,替台灣生技產業未來方向作整體評估與規劃,並引導國際聯盟的佈局。
經濟部推動奈米標章,第一個奈米標章即將在今年發出市面上強調奈米的產品充斥,舉凡從燈管、面膜、瓷磚等各種產品都宣稱是奈米產品,因此經濟部決定推動奈米標章認證制度。該制度的推行,可讓消費者對奈米產品有更正確的認知和信任,對於鼓勵廠商開發優良奈米產品也有正面影響。 經濟部於今年辦理第一階段的技術初審,共有六家廠商通過,預定十月中旬將要進行第二階段的跨部會複審,只要能通過複審審查,就可以取得奈米標章。 有鑒於 奈米技術工業納入新興重要策略性產業已在日前拍板定案,為避免奈米標章浮濫,而可能造成租稅浮濫,經濟部指出,未來該標章的核發審查將審慎把關,預期僅很少數廠商的奈米技術工業可成為新興產業。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現