國際推動綠色科技發展重要法制政策研析

刊登期別
第19卷,第3期,2007年03月
 

本文為「經濟部產業技術司科技專案成果」

※ 國際推動綠色科技發展重要法制政策研析, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2105&no=57&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
美國NIST發布更新《網路安全資源指南》提升醫療領域的網路安全及隱私風險管理

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2022年7月21日發布更新《網路安全資源指南》(A Cybersecurity Resource Guide, NIST SP 800-66r2 ipd)。本指南源自於1996年美國《健康保險流通與責任法》(Health Insurance Portability and Accountability Act, HIPAA)旨在避免未經患者同意或不知情下揭露患者之敏感健康資料,並側重於保護由健康照護組織所建立、接收、維護或傳輸之受保護電子健康資訊(electronic protected health information, ePHI),包括就診紀錄、疫苗接種紀錄、處方箋、實驗室結果等患者資料之機密性、完整性及可用性。其適用對象包含健康照護提供者(Covered Healthcare Providers)、使用電子方式傳送任何健康資料的醫療計畫(Health Plans)、健康照護資料交換機構(Healthcare Clearinghouses)及為協助上述對象提供健康照護服務之業務夥伴(Business Associate)均應遵守。   本指南最初於2005年發布並經2008年修訂(NIST SP 800-66r1 ipd),而本次更新主要為整合其他網路安全相關指南,使本指南與《網路安全框架》(Cybersecurity Framework, NIST SP 800-53)之控制措施等規範保持一致性。具體更新重點包括:(1)簡要概述HIPAA安全規則;(2)為受監管實體在ePHI風險評估與管理上提供指導;(3)確定受監管實體可能考慮作為資訊安全計畫的一部分所實施的典型活動;(4)列出受監管實體在實施HIPAA安全規則之注意事項及其他可用資源,如操作模板、工具等。特別在本指南第三章風險評估與第四章風險管理提供組織處理之流程及控制措施,包括安全管理流程、指定安全責任、員工安全、資訊近用管理、安全意識與培訓、應變計畫、評估及業務夥伴契約等。而在管理方面包括設施權限控管、工作站使用及安全、設備媒體控制;技術方面則包含近用與審計控管、完整性、個人或實體身分驗證及傳輸安全。上述組織要求得由政策、程序規範、業務夥伴契約、團體健康計畫所組成,以助於改善醫療領域的網路安全及隱私保護風險管理。預計本指南更新將徵求公眾意見至2022年9月21日止。

2006年世界智慧財產權組織大會會議關於「商標法條約」的議題

  世界智慧財產權組織( WIPO )大會第三十三屆會議於 2006 年 9 月 25 日 (星期一)在瑞士日內瓦正式開幕,有來自全球 183 個會員國共襄盛舉,此次會議將於 9 月 25 日 至 10 月 3 日 間舉行。本次世界智慧財產權組織大會將審查該組織的工作進展,還有討論未來的政策方向,包括今年 3 月間在新加坡外交會議中所協商通過的「商標法條約( the Singapore Treaty on the Law of Trademarks ,故本條約又被簡稱為新加坡條約 Singapore Treaty )」、網域名稱、保護廣播組織與視聽表演之規定等議題。   其中今年協商通過的新加坡條約規範中,納入雷射圖樣( 3D )商標、動作商標、顏色、氣味及聲音等不同類型的商標,突破傳統商標只強調視覺觀感的象徵,增加許多非視覺的商標類型,以求符合商業的新興趨勢,勢必將使未來商標的應用更加多樣化。此外在新加坡條約中也增加相關救濟規定,如:商標申請人若非故意而導致逾期未完成註冊,締約國應提供權利回復的方式( Rule9 )等,對於申請人的保護更加周到。

奈米科技之前瞻性規劃-以美國推行綠色奈米為中心

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP