本文為「經濟部產業技術司科技專案成果」
作為鄉村音樂發源地的美國田納西州,有著蓬勃的音樂產業,匯聚來自各路的表演藝術工作者,因而對相關從業者的個人公開權(Right of Publicity)保障尤為重視,早在1984年即制訂《個人權利保護法》(Personal Rights Protection Act),確保該權利不會因權利人死亡而消滅,屬於可由他人繼承之財產權,允許繼承人自由轉讓和授權,包含其姓名(Name)、肖像(Image)、形象(Likeness)之權利主張,但被繼承人之聲音仍不在權利主張的範疇。 惟現今AI深偽仿聲技術所生成之音樂亦可能侵害音樂人及藝術家的智慧財產權,因而於2024年3月21日由州長簽署《確保肖像、聲音和圖像安全法案》(Ensuring Likeness Voice and Image Security Act),簡稱貓王法案(ELVIS Act),該法案於3月7日獲得州議會兩黨一致支持,首度明確將個人公開權得主張之範圍擴及至表演者的聲音(NIL+V),其目的是為了應對AI生成音樂的突破性進展,以保護音樂創作人及表演藝術家之權利免受AI技術侵害,這是全美首部禁止他人未經授權使用或重製權利人的聲音以供訓練AI模型或生成深偽內容所制定的法律(註:加州雖已將聲音作為權利保護客體但非針對AI技術之侵害),明確規定第三人在未得本人之同意下,若意圖利用AI深偽技術生成經仿製、偽造或變造的圖片、影音、聲音等數位檔案,而後續冒用本人名義進行公開發表或公開演出詞曲創作人及表演藝術工作者之聲音或影像的行為,則須承擔相應的民事侵權行為責任,以及構成歸類在微罪的刑事犯罪,刑期最高可處11個月又29天的監禁或2,500美元以下的罰金,該法案預計於今年7月1日生效,且僅適用於在田納西州境內的工作者。 該法案所保護之主體除音樂創作人及表演藝術家外,亦包含動畫配音員及串流媒體盛行下廣播與網路節目的播音員(俗稱播客),以確保這類主要仰賴聲音維生的工作者能免於AI仿聲技術而減損其專業價值;另外若有與詞曲創作人或表演藝術工作者締結專屬合約之唱片公司或經紀公司亦為訴訟程序的適格當事人,可代理公司旗下的工作者尋求救濟管道;最後,若利用權利人的姓名(Name)、肖像(Image)、形象(Likeness)或聲音(Voice)屬於法案中列舉的合理使用行為,如基於公益目的、新聞播報、轉化性使用、偶然入鏡或著作之附帶性利用等,則應屬美國憲法第一修正案之保障範圍而非在該法案的規範射程。 除田納西州之外,美國尚有其他39個州提出或正在推動相似的法案,但全美目前仍欠缺統一性的立法;聯邦政府仍尚在研擬如何保護表演藝術工作者個人公開權的階段,日前在田納西州政府今年1月時提出貓王法案的草案後不久,由美國眾議院議員組成的跨黨派小組曾公佈《禁止人工智慧偽造和未經授權的重製法案》(或稱為《禁止人工智慧詐欺法案》),旨在推動建立聯邦層級的框架性立法,以確保個人的聲音或肖像權屬美國憲法第一修正案的保障範圍,而該提案據稱是針對美國參議院去年10月提出的《鼓勵原創、培育藝術和維繫安全娛樂法案》(或稱為《禁止仿冒法案》)的更新及補充,以維護公共利益,創造具有原創性、正當性及安全性的休閒娛樂環境。
個人資料保護脈絡下的「綑綁式同意」 日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。
歐盟執委會發布2020歐洲創新計分板報告歐盟執委會(European Commission, EC)於2020年6月23日發布2020歐洲創新計分板報告(European Innovation Scoreboard 2020, EIS),其以「整體結構條件」(Framework conditions)、「投資」、「創新活動」和「影響力」(Impacts)四大指標評比歐盟成員國以及其他歐洲國家的研究與創新績效、創新環境等;各指標下再細分為10個次標和27個子標,例如人力資源、友善創新環境建構、政府部門研發創新支出、企業專業職能訓練、專利與商標申請、高科技產品出口等。 歐洲計分板將歐盟會員國創新表現分為四組,以2020年綜合創新能力分別為:(1)創新領導者(Innovation Leaders):包含丹麥、芬蘭、荷蘭、瑞典等國,為創新表現大於歐盟成員國平均創新度20%以上者;(2)優秀創新者(Strong Innovators):包含奧地利、比利時、法國、德國、葡萄牙等,創新表現大於歐盟成員國平均者;(3)中等創新者(Moderate Innovators):包含希臘、匈牙利、義大利、西班牙、波蘭等國,其創新表現小於歐盟平均者;以及最後一組(4)適度創新者(Modest Innovators):包含羅馬尼亞及保加利亞,為創新表現低於歐盟平均之50%。 此外,在各特定領域上,該報告亦有對不同國家進行排名。例如在創新研究體系領域,表現最好者為盧森堡、丹麥、荷蘭;中小企業帶領創新則以葡萄牙和芬蘭表現最佳;創新協力合作(Innovation linkages and collaboration)以奧地利、比利時、芬蘭最佳。而在全球綜合創新表現上,南韓為創新表現最佳,其向加入專利合作條約(Patent Cooperation Treaty, PCT)國家提交之專利申請數、商標申請數、設計專利申請數量最多,分別為世界其他先進國家的2-10倍不等(申請數量以每十億GDP為一單位計算);其次是加拿大、澳洲、日本、歐盟、美國與中國。歐盟已是第二年超越美國,並在其他主要競爭者中(美國、中國、巴西、俄羅斯、南非等)保持優先,唯優勢差距開始減少。此外,EIS跨年度分析評比,是以歐盟2012年創新表現為基準。報告中將歐盟2012年之創新表現預設為100,在2012-2019年間,中國的創新表現評分自79成長至97,而美國則在93-99間穩定變動;特別是2019和2020兩年,美國創新表現均維持在99,而無顯著之進步。故報告預測若依此趨勢,中國創新表現將在近年超越美國。