本文為「經濟部產業技術司科技專案成果」
隨著地球人口增加,糧食問題日益嚴重,而土地資源有限及氣候變遷也影響著產量。除了開源—提升糧食產量之外,如何節流—減少糧食浪費,也成為各國重要課題。日本為因應聯合國永續發展目標(SDGs)中的具體目標12.3:「在2030年之前,達到減少生產供應鏈糧食損失,同時掌握消費端食物浪費流向。」並改善國內食物大量損耗的問題,參議院於2019年5月24日表決通過由跨黨派議員聯盟提出的《減少食品損耗促進法》(食品ロス削減推進法)。有鑑於日本的循環型社會法制體系中,已有以實現食品環保3R(Reduce, Reuse, Recycle)為目的之《食品循環利用法》(食品リサイクル法),《減少食品損耗促進法》要求中央及地方政府在依既有相關法規,實施食品廢棄物減量時,也應考量本法之目的和內容,適當地推行措施。 《減少食品損耗促進法》將「減少食品損耗」定義為:「防止仍能食用的食品不被廢棄之社會性措施。」並定義「食品」 係除《醫藥品、醫療機器等法》第2條第1項所稱之「藥品」、同條第2項所稱之「醫藥部外品」及同條第9項所稱之「再生醫療等製品」以外之飲品及食物。 依《減少食品損耗促進法》之規定,未來內閣府將設立名為「減少食品損耗促進會議」(食品ロス削減推進会議)之專責機關,制定減少食品損耗的基本方針,並審議相關重要事項及推動政策之實施,而地方政府也應努力制定具體的相關促進計畫。本法也鼓勵企業與中央和地方政府合作,積極減少食物廢棄物,同時希望消費者自主採取行動。「減少食品損耗」作為從食品的生產到消費各階段的重要目標, 將成為新的全民運動。
日本《小型無人機等飛行禁止法》修正案內閣官房副長官於2019年12月18日召集國土交通省、警察廳、經濟產業省、防衛省等相關主管機關,召開第9次「小型無人機相關府省廳聯絡會議」(小型無人機に関する関係府省庁連絡会議),並決議由內閣於2020年向國會提交《小型無人機於重要設施周邊地區上空飛行禁止法》(重要施設の周辺地域の上空における小型無人機等の飛行の禁止に関する法律,以下簡稱「小型無人機等飛行禁止法」)修正案,將重要國際機場及其周邊地區列為小型無人機的永久禁航區。 《小型無人機等飛行禁止法》之目的係禁止小型無人機於國家重要設施上空飛行,以防患於未然,並維護國政中樞機能和良好國際關係,以及確保公共安全。依該法第2條、第9條第1項之規定,小型無人機之禁航區域包含國會議事堂、內閣總理大臣官邸、其他國家重要設施等、外國領事館等、國防相關設施和核能電廠,以及設施周邊經指定之地區。 而在機場部分,為預防危險並確保大會能順利準備及營運,日本已透過《世界盃橄欖球賽特別措施法》(ラグビーW杯特措法)及《東京奧運暨帕運特別措施法》(東京五輪・パラリンピック特措法),將國土交通大臣指定之機場及其周圍300米地區增列為小型無人機禁航區,但僅為大會期間的暫時性措施。內閣考量小型無人機之飛行可能會影響機場功能運行,甚至對經濟帶來重大不良影響,欲透過《小型無人機等飛行禁止法》修正案,將該暫時性措施改為永久措施。
建立基因資料庫 台灣可行賽雷拉( Cel-era)公司創始人溫特克萊首度來台,他是四年前完成人類基因體解碼的靈魂人物,他建議可運用基因解碼技術,建立基因資料庫,解決台灣醫療資源浪費。 事實上,早在2004年2月行政院科技顧問組為追蹤研究國人常見疾病與基因之間的關係,宣布推動「台灣疾病與基因資料庫」建置計畫。希望透過該基因資料庫的建立,確實掌握國人致病基因,奠定基因治療基礎,除了有效節省醫療資源浪費,更可鎖定特有亞洲疾病為研發重心,作為生技產業發展的優勢利基。台灣人口數約有二仟多萬,且具有完整健全的全民健保及戶籍資料,再加上台灣生物科技產業技術的蓬勃發展,想要建立大型的基因資料庫技術性應相當可行。國外有冰島和英國等多國發展之經驗可參考。 由於涉及人權自主、個人隱私、安全保密、社會倫理、研究成果的利益分享、以及由誰來擔任執行單位等方面的爭議,加上目前國內法令規範不足,既有相關法令多為位階較低的指導性公告,確實有必要建置相關配套制度及法律,以協助該計劃落實執行與發展。
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。