「反間諜程式法草案」於參議院尋求闖關通過

  美國眾議院已於本週(2007.05.23)口頭表決通過「反間諜程式法草案」,未來將有待於參議院表決通過後,公佈施行該法。

 

  間諜程式通常是指涉收集電腦使用者資訊的惡意軟體,該惡意軟體通常係安裝免費軟體中不知名的某個套件,或者是隱含在所下載網路遊戲程式中、不請自來的廣告頁面或者電腦中毒所導致。其危險之處即在於,該惡意軟體將使電腦使用者的使用者帳號、密碼以及個人金融帳目細節等等個人資料傳遞出去,以詐欺該使用者。

 

  由於該法案要求程式開發商於使用者下載此類程式前,需要提醒使用者以及獲得他們的同意,因此,軟體產業非常反對該項規範。

 

  據了解,美國眾議院已於2004年及2005年以壓倒性的勝利表決通過「反間諜軟體法案」,惟當時該法案並無法獲得參議院的青睞,而慘遭否決。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 「反間諜程式法草案」於參議院尋求闖關通過, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2272&no=57&tp=1 (最後瀏覽日:2025/11/22)
引註此篇文章
你可能還會想看
歐盟理事會公告延長對俄羅斯經濟制裁

  歐盟理事會(European Council)於2023年1月27日決定將針對俄羅斯特定經濟部門的限制措施延長六個月至2023年7月31日。歐盟對俄羅斯的制裁可回溯自2014年「克里米亞危機」,俄羅斯破壞烏克蘭局勢穩定。自2022年2月以來,鑑於俄羅斯對烏克蘭軍事侵略,歐盟制裁範圍大幅擴大(截至2022年12月16日共有9輪制裁)。歐盟的制裁範圍廣泛,涉及如下不同領域的措施:   (1)貿易層面:對技術和軍民兩用貨品(dual-use goods)、提升俄羅斯工業能力交易、陸海空運輸以及奢侈品交易等進行限制。   (2)能源層面:禁止向俄羅斯購買原油及特定石油產品;或透過第三國將原油及特定石油產品從俄羅斯進口或移轉到歐盟境內。   (3)金融層面:將俄羅斯銀行踢出「環球銀行金融電信協會」(SWIFT)支付系統,以及限制提供給俄羅斯的金融服務(如存款、信託、信評等)。   (4)資訊層面:終止透過假消息(disinformation)支持克里姆林宮的廣播活動和廣播許可證。   歐盟自2022年2月24日以來,針對俄羅斯全面入侵烏克蘭採取史無前例的強硬制裁措施。歐盟並藉此傳達其支持烏克蘭在國際公認邊界內的獨立、主權以及領土完整。

FCC通過命令以促進飛機上網路服務

  為促進電信市場競爭與服務之普及,在2012年12月28日美國公佈FCC12-161命令,而透過該項命令,預計未來不論機組人員、亦或是旅客於商業客機、自用客機內,使用網路服務的比例將會提升。FCC認為此舉不僅可滿足消費者對無所不在(Ubiquitous)網路的需求外,亦可促後使經濟成長與創造就業機會。   其實,早於2001年,美國政府就透過同步軌道的方式(Geostationary-Orbit)開放網路服務,但在設置上必須設置多個地球站(earth station),而FCC所命名的Earth Stations Aboard Aircraft(ESAA),則延續過去設置於車輛、船舶之技術,在飛機外部安裝接收器,以和衛星固定業務(fixed satellite service)作為骨幹,使乘客手機透過例如Wifi技術取得網路服務;至於,在頻段的使用上,相較過去以非有害干擾為前提,ESAA則有明確之規定:下傳(downlink)頻率之選擇是依循車輛、船舶執行相同服務的規定、並考量將經過不同國域與領海,故選擇該10.95-11.2 GHz、11.45-11.7 GHz與11.7-12.2 GHz,以符合美國、國際頻譜配置;上傳(uplink)的頻率則是基於不受雙向干擾之情況下,選擇14.0-14.5 GHz頻段。   現階段,FCC為積極促進該業務發展,不僅允許航空公司與寬頻業者皆可提供服務外,亦建立一套管制架構,以保護飛航網路不受干擾、確保地面無線電服務能正常運作,並且,為減少行政資源與促進服務普及,FCC簡化業者申請流程,最多僅需原來時間的一半。雖然, FCC針對技術、執照的發放有詳細的規範,但尚未對旅客使用VOIP服務(Eg:Line、Skype)做任何規範,而這是FCC未來推廣該服務之隱憂。儘管如此,該服務推展確實可便利遊走各國間之旅客,但對於想在飛機上享受片刻寧靜的人而言,能普及使用Wifi可真是喜憂參半的消息。

日本公布設立AI安全研究所與著手訂定AI安全性評鑑標準

日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下: 1.訂定涵蓋《廣島AI進程》之政策框架(Framework) 2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle) 3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct) 為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下: 1.進行AI安全性評鑑之相關調查 2.研擬AI相關標準 3.研擬安全性評鑑標準與實施方式 4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI) 另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP