日本經濟產業省為協助中小企業更新老舊機器設備,並鼓勵中小企業導入新穎先進設備改善企業生產率,公布「先進設備導入計畫指引」(導入促進指針),於2019年至2021年間授權地方政府訂定先進設備導入計畫(先端設備等導入計画),提出區域內申請計畫的資格、設備定義、計畫目的與財產稅減免額度,以促成地方中小企業對地方特色的貢獻與參與,並改善在地產業環境與結構。 符合資格的中小企業若能在核准計畫年度內,每年勞動生產率提高達3%,可適用財產稅稅率減半或0%之優惠稅率(非免稅)。「先進設備導入計畫指引」亦明確指出,審核通過之計畫仍可進一步適用經濟產業省「中小型製造服務經營支援補助」(ものづくり・商業・サービス経営力向上支援補助金)、「服務業IT應用生產力提升補助」(サービス等生産性向上IT導入支援事業),享有更多的補助金補助。 所稱設備係指任何機械、裝置、備品、建築物附屬設備、軟體,以及電子檢驗或測量儀器。各地方政府訂定計畫時,可依其產業政策進一步限縮範圍。而先進之定義,係指欲購置設備之良率或生產效率,應較所淘汰設備高1%以上。有關新、舊設備之汰換應以同產業、同生產流程者為限,兩者比較之期間為淘汰設備原銷售日期起後10年內。由此可知,先進設備導入計畫的特殊性在於加速中小企業汰舊換新,提高勞動生產率以因應人口高齡化,而與鼓勵企業購買最新、最尖端設備之補助措施有所不同。 此外,為健全地方財政自主,「先進設備導入計畫指引」亦要求各地方政府應說明地方產業、環境或人文特色及先進設備的投資條件,以促進經濟發展與地方產業結構的融合。該指引具體建議包括: 應考量到中小企業導入先進設備提高勞動生產率後,影響當地就業人口需求,以及如何避免企業裁員的機制。 導入之先進設備因運作所產生之噪音、光害、排放污染等環境問題;以及導入之設備是否影響到當地居民生活作息而有侵害公共秩序之虞。 考量到財產稅為地方稅之稅源,應避免過度減免而導致地方財政虧損。
新加坡個人資料保護法修正草案新加坡通訊及新聞部(Ministry of Communications and Information, MCI)與新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於西元2020年5月14日至28日間針對其「個人資料保護法修正草案」進行民眾意見諮詢,總共收到87份回覆。綜合民眾回覆之意見後,同年10月5日,於議會提出了「個人資料保護法修正草案」,修正重點如下: 提高外洩個人資料者罰鍰金額,至該公司在新加坡年營業額10%或1000萬美元。MCI / PDPC說明,實際上於裁罰前會綜合考量個案事實與相關因素(如:嚴重性、可歸責性、影響狀況、組織有無採取任何措施減輕個資外洩造成的影響等),作為裁罰金額的判斷依據。此外,新加坡的個人資料保護法也加入了個資外洩通知義務,但與歐盟一般資料保護規範(General Data Protection Regulation, GDPR)仍有不同,例如:其多了評估是否通知的機制。 組織基於商業改善之目的,且遵守法定條件下,得未經同意使用個人資料,此處商業改善目的包含:(1)改善或加強提供之商品或服務,或開發新的商品或服務;(2)改善或發展新的營運方式;(3)瞭解客戶喜好;(4)客製化商品或服務所需。 在公司併購、重組、出售股份以及經營權轉讓等關於公司資產處置情形,得例外無需經當事人同意而蒐集、處理與利用個人資料。 新增資料可攜權相關規定。 處罰未經授權者處理個人資料之行為。針對民眾回覆之疑慮(認為草案內容不明確),MCI / PDPC說明預計在《法規與諮詢指南》中闡明有關授權行為的細節性規定,包含採取的形式。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。
網際網路交換中心業務於我國電信法上定位之探討