歐盟最近核准一項由澳洲生技公司Florigene所研發的基因改造康乃馨之進口,核准有效時間為十年。Florigene為澳洲最早設立的生技公司之一,屬日本三多利集團(Suntory group)之一,Florigene的基因改造康乃馨係以”Florigene Moonlite”之名行銷,該公司利用基改技術改變康乃馨的顏色,以延長其瓶插的時間,該基因改造康乃馨中另含有抗雜草基因。
根據歐盟執委會核准內容,未來Florigene的基因改造康乃馨將可在歐盟27個會員國境內,以切花的形式銷售,但不得在歐盟境內栽種,並須依歐盟法令規定,明確標示為「本產品為基因改造生物」或「本產品為基因改造康乃馨」,標示內容同時必須指明「不得供人類或動物食用,且不得用以栽種」或在產品附隨文件中為前述之說明。
事實上歐盟並非首次核准通過基因改造康乃馨之進口,早在1998年開始展開實質的六年基因改造生物進口禁令前,歐盟所通過的最後兩件基因改造植物核准案,即是基因改造康乃馨。不過歐盟一向對基因改造生物持保守態度,因此在2004年實施更為嚴格的基因改造生物管理法制後,才又重新啟動基因改造生物之進口審查。
本文為「經濟部產業技術司科技專案成果」
英國於三月份發布2021年度財政預算案,其中說明為鼓勵新創企業(快速成長型企業)發展而公布了八項策略,包含:立即提供救濟以抵抗新冠肺炎帶來的風暴、政府成立新基金「Future Fund: Breakthrough」投資新創企業、企業激勵員工措施(EMI)之重視、發行高科技技術簽證、培養下一世代人才、新創企業協助成長計畫(針對數位化及企業管理)、研發稅收減免計畫之修正以及英國主板上市規則之修正。 其中英國主板上市規則之修正部分,主要委託外部專家Lord Hill信行獨立審查。經審查後專家提出15項建議,包含: 財政部須向議會提交一份年度報告,並於報告中說明已採取或即將採取之專家建議。 財政部應隨時注意英國金融行為監理總署 (Financial Conduct Authority, FCA)是否為英國打造適合新創企業發展並擁有良好監管之公開市場。 應於優質板(Premium Listing)開放上市公司使用雙層股權結構,但須搭配相關監管措施以維持良好公司治理。 重新定義、命名標準板(Standard Listing)。 修正並降低股權分散之要求,並建議依據不同規模公司設置不同分散比例。 放寬特殊目的收購公司(Special Purpose Acquisition Company, SPAC)限制,同時為保護一般投資人建議新增「異議股東股份收買請求權」。 建議修正公開說明書相關部分,如:放寬豁免規定、允許使用替代文件。 建議考量於英國二次上市之企業毋庸另行製作公開說明書,而允許使用於其他國家上市之公開說明書。 建議修正董事以及發行人責任,促使其提供前瞻性訊息。 擴大科技研發公司上市時豁免獲利之要求至其他新創企業。 建議降低優質板歷史財務文件之要求。 考量如何運用科技提高一般投資人參與公司治理。 修改上市規則以利提高公司籌資之效率。 審查現行公開發行相關規則,確定各規則均有符合設立目的。 放寬廣泛金融生態系統限制,如:放寬養老基金投資限制、解決競爭稅收環境以及中小企業研發優惠。
馬來西亞通過修正《個人資料保護法》馬來西亞個人資料保護委員會(Personal Data Protection commissioner,下稱個資保護委員會)於2023年度收受與個人資料(下稱個資)濫用、外洩相關申訴案件數量達779件,成長數量令人憂心。為確保對於個資保護規範能與國際標準發展同步,並加強個資遭洩漏時即時採取應變措施等相關政策,以解決前述憂心狀況,數位部(Ministry of Digital)於2024年7月10日提出《個人資料保護法》(Personal Data Protection Act 2010, PDPA)修正案,並於同年7月16日經下議院(Dewan Rakyat,馬來語直譯)表決通過。 本次PDPA修正重點包含: 1.設立個資保護官(data protection officer, DPO)制度:強制要求蒐集、處理、利用個資之資料控管者(data controller),及受資料控管者委託而實質處理個資之資料處理者(data processor),均需指派個資保護官。 2.擴張對於敏感性個資(sensitive personal data)定義:與個人身體、生理或行為特徵相關之技術處理所生個資(即生物辨識資料),皆屬之。 3.制訂個資外洩通報制度:強制要求發生個資外洩時須通報個資保護委員會,以及可能受到任何重大損害之個資當事人,惟對於「重大損害」尚未有明確定義。 4.導入資料可攜性:在遵守技術可行性(technical feasibility)與資料格式相容性(data format compatibility)之情境下,允許資料控管者之間在當事人要求下進行資料傳輸。 5.資料處理者的合規遵循義務:舊法僅要求資料控管者須遵守PDPA所規定的安全原則(security principle);新法則擴及要求資料處理者亦有安全原則之合規遵循義務。 6.提高罰則:舊法對於違反個資保護原則者,最高僅得處300,000馬幣和/或2年監禁;新法提高罰則最高得處1,000,000馬幣和/或最高3年監禁。 7.跨境傳輸規範修正:原則允許資料控管者將個資傳輸至馬來西亞以外,惟應採取適當措施確認及確保資料接收方保護個資之水準與馬來西亞個資法程度相當;並將跨境白名單制度調整為黑名單制度,不得傳輸至政府公布黑名單所列地區。 馬來西亞數位部本次修正PDPA,彰顯該國政府對個資保護之重視,惟關於任命個資保護官資格要求、個資外洩通報重大程度標準等細部規範,則仍須待修正案通過後,經個資保護委員會發布相關指引再行釐清。
世界衛生組織發布歐洲區域人工智慧於醫療系統準備情況報告,責任規則為最重要之關鍵政策因素世界衛生組織發布歐洲區域人工智慧於醫療系統準備情況報告,責任規則為最重要之關鍵政策因素 資訊工業策進會科技法律研究所 2025年12月18日 世界衛生組織(World Health Organization, WHO)於2025年11月19日發布「人工智慧正在重塑醫療系統:世衛組織歐洲區域準備情況報告」(Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region)[1],本報告為2024年至2025年於WHO歐洲區域醫療照護領域人工智慧(AI for health care)調查結果,借鑒50個成員國之經驗,檢視各國之國家戰略、治理模式、法律與倫理框架、勞動力準備、資料治理、利益相關者參與、私部門角色以及AI應用之普及情況,探討各國如何應對AI於醫療系統中之機會與挑戰。其中責任規則(liability rules)之建立,為成員國認為係推動AI於醫療照護領域廣泛應用之最重要關鍵政策因素,因此本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,透過救濟與執法管道以保護病患與醫療系統之權益。 壹、事件摘要 本報告發現調查對象中僅有8%成員國已發布國家級醫療領域特定AI策略(national health-specific AI strategy),顯示此處仍有相當大之缺口需要補足。而就醫療領域AI之法律、政策與指導方針框架方面,46%之成員國已評估於現有法律及政策相對於醫療衛生領域AI系統不足之處;54%之成員國已設立監管機構以評估與核准AI系統;惟僅有8%之成員國已制定醫療領域AI之責任標準(liability standards for AI in health),更僅有6%之成員國就醫療照護領域之生成式AI系統提出法律要求。依此可知,成員國對於AI政策之優先事項通常集中於醫療領域AI系統之採購、開發與使用,而對個人或群體不利影響之重視與責任標準之建立仍然有限。於缺乏明確責任標準之情況下,可能會導致臨床醫師對AI之依賴猶豫不決,或者相反地過度依賴AI,從而增加病患安全風險。 就可信賴AI之醫療資料治理方面(health data governance for trustworthy AI),66%成員國已制定專門之國家醫療資料戰略,76%成員國已建立或正在制定醫療資料治理框架,66%成員國已建立區域或國家級醫療資料中心(health data hub),30%成員國已發布關於醫療資料二次利用之指引(the secondary use of health data),30%成員國已制定規則,促進以研究為目的之跨境共享醫療資料(cross-border sharing of health data for research purposes)。依此,許多成員國已在制定國家醫療資料戰略與建立治理框架方面取得顯著進展,惟資料二次利用與跨境利用等領域仍較遲滯,這些資料問題仍需解決,以避免產生技術先進卻無法完全滿足臨床或公衛需求之工具。 就於醫療照護領域採用AI之障礙,有高達86%之成員國認為,最主要之障礙為法律之不確定性(legal uncertainty),其次之障礙為78%之成員國所認為之財務可負擔性(financial affordability);依此,雖AI之採用具有前景,惟仍受到監管不確定性、倫理挑戰、監管不力與資金障礙之限制;而財務上之資金障礙,包括高昂之基礎設施成本、持續員工培訓、有限之健保給付與先進AI系統訂閱費用皆限制AI之普及,特別於規模較小或資源有限之醫療系統中。 就推動AI於醫療照護領域廣泛應用之關鍵政策因素,有高達92%之成員國認為是責任規則(liability rules),其次有90%之成員國認為是關於透明度、可驗證性與可解釋性之指引。依此,幾乎所有成員國皆認為,明確AI系統製造商、部署者與使用者之責任規則為政策上之關鍵推動因素,且確保AI解決方案之透明度、可驗證性與可解釋性之指引,也被認為是信任AI所驅動成果之必要條件。 貳、重點說明 因有高達9成之成員國認為責任規則為推動AI於醫療照護領域廣泛應用之關鍵政策因素,為促進AI應用,本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,並建立相應機制,以便於AI系統造成損害時及時補救與追究責任,此可確保AI生命週期中每個參與者都能瞭解自身之義務,責任透明,並透過可及之救濟與執法管道以保護病患與醫療系統之權益;以及可利用監管沙盒,使監管機構、開發人員與醫療機構能夠在真實但風險較低之環境中進行合作,從而於監管監督下,於廣泛部署前能及早發現安全、倫理與效能問題,同時促進創新。 此外,WHO歐洲區域官員指出,此次調查結果顯示AI於醫療領域之革命已開始,惟準備程度、能力與治理水準尚未完全跟進,因此呼籲醫療領域之領導者與決策者們可考慮往以下四個方向前進[2]: 1.應有目的性地管理AI:使AI安全、合乎倫理與符合人權; 2.應投資人才:因科技無法治癒病人,人才是治癒病人之根本; 3.需建構可信賴之資料生態系:若大眾對資料缺乏信任,創新就會失敗; 4.需進行跨國合作:AI無國界,合作亦不應受限於國界。 參、事件評析 AI於醫療系統之應用實際上已大幅開展,就歐洲之調查可知,目前雖多數國家已致力於AI於醫材監管法規與資料利用規則之建立,據以推動與監管AI醫療科技之發展,惟由於醫療涉及患者生命身體之健康安全,因此絕大多數國家皆同意,真正影響AI於醫療領域利用之因素,為責任規則之建立,然而,調查結果顯示,實際上已建立醫療領域AI之責任標準者,卻僅有8%之成員國(50個國家中僅有4個國家已建立標準),意味著其為重要之真空地帶,亟待責任法制上之發展與填補,以使廠商願意繼續開發先進AI醫療器材、醫療從業人員願意利用AI醫療科技增進患者福祉,亦使患者於受害時得以獲得適當救濟。亦即是,當有明確之責任歸屬規則,各方當事人方能據以瞭解與評估將AI技術應用於醫療可能帶來之風險與機會,新興AI醫療科技才能真正被信任與利用,而帶來廣泛推廣促進醫療進步之效益。由於保護患者之健康安全為醫療領域之普世價值,此項結論應不僅得適用於歐洲,對於世界各國亦應同樣適用,未來觀察各國於AI醫療領域之責任規則發展,對於我國推廣AI醫療之落地應用亦應具有重要參考價值。 [1] Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region, WHO, Nov. 19, 2025, https://iris.who.int/items/84f1c491-c9d0-4bb3-83cf-3a6f4bf3c3b1 (last visited Dec. 9, 2025). [2] Humanity Must Hold the Pen: The European Region Can Write the Story of Ethical AI for Health, Georgia Today, Dec. 8, 2025,https://georgiatoday.ge/humanity-must-hold-the-pen-the-european-region-can-write-the-story-of-ethical-ai-for-health/ (last visited Dec. 9, 2025).
美國國家安全局發布「軟體記憶體安全須知」美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下: 1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。 2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。 3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。 搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。