本文為「經濟部產業技術司科技專案成果」
新加坡金融管理局(Monetary Authority of Singapore, MAS)於2023年8月15日發布穩定幣監管架構,旨在維持金融穩定發展,並將與新加坡幣或十大工業國(G10)貨幣掛勾之單一貨幣穩定幣(single-currency stablecoins, SCS)納入監管,確保穩定幣的安全可靠。符合監管規範之穩定幣發行人,可向MAS申請標註為「MAS監管之穩定幣(MAS-regulated stablecoins)」,有助於區分其他不受政府監管之數位支付代幣(digital payment tokens),以保障穩定幣持有人權益及降低金融穩定之潛在風險。 依據本監管架構,穩定幣發行人需遵循的監管要求包括:(1)價值穩定性,穩定幣儲備資產須遵守其構成、估值、託管與審計方面的要求,以維持價值穩定性;(2)資本,發行人必須維持最低資本與流動資產,以降低破產風險;(3)贖回,持有人可在發行人收到贖回請求後5個工作天內,以穩定幣面值贖回;(4)資訊揭露,發行人必須向持有人揭露相關重要資訊,包括有關穩定幣價值穩定機制、穩定幣持有人權利以及儲備資產審計結果等資訊。MAS表示,穩定幣若受到適當監理,維持價值穩定,將可成為可信賴的數位交易媒介,開創更多創新的金融科技應用,促進金融穩健發展。
專利申請 不見得先搶先贏「先申請不一定先贏」,經濟部智慧財產局完成「專利程序審查基準」草案,明定專利申請案若有不合程序者,就算是先提出申請的專利案件,可能面臨須重新審查,進而影響專利生效日,或者喪失優先權。 依新完成的專利程序審查基準規定,未來,申請人如果未補正,或補正仍不齊備者,則視其應補正的申請文件種類,分別為申請案不受理或產生一定法律效果。例如,申請人可能因此喪失優先權,或被視為未寄放,或者依現有資料重新審查等。先到先嬴的專利申請原則,將因新制施行而改變。 我國專利法內容,既為實體法,也為程序法,除規定准予專利權、撤銷專利權的程序、形式及實體條件外,也規定專利權及專利權管理事項,依「先程序後實體」原則,合於程序審查者,才能進入形式、實體審查,因此,無論是專利的初審、再審查或舉發等申請案,均與專利的程序審查,有密切關聯。由於我國專利法對於專利的申請採取「先申請原則」,申請日的認定,會影響到實體審查對專利要件判斷的時點,因此,申請日的認定,也是專利程序審查的主要重點。 程序審查內容及範圍,在各國審查實務上,雖有所不同,但是,包括審查各種書表是否採用主管機關公告訂定的統一格式;各種申請的撰寫、表格的填寫或圖式的製法,是否符合專利法令的規定;應該檢送的證明文件是否齊備,是否具備法律效力;申請日的認定;發明人或創作人及申請人的資格及程序是否符合規定;代理人是否具備代理的資格及權限;有無依法繳納規費等。 智慧局對於受理申請與文件審查,將分開進行,因此,專利申請人親自送件或郵寄案件,不論申請文件是否齊備,智慧局均會先行受理申請,待審查時,發現申請文件欠缺或不符合法定程式,而得補正者,再通知申請人限期補正。
回歸修理/再製造判準?談日本最高裁事件判決 日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。