歐盟通過新電視指令

  歐盟27個會員國於5月24日在布魯塞爾通過新的電視指令(neue Fernsehrichtlinie),內容涉及「在線或離線電視服務(Fernsehen on- und offline)」、「廣告規範」及「來源國原則(Herkunftslandsprinzip:指跨國服務或商品依據來源國之標準處理。)」。新的電視指令乃源自於有18年歷史之電視指令,並重新命名為「影音媒體服務指令(Richtlinie über Audiovisuelle Mediendienste)」,指令內容包括線上直播節目、近似隨選視訊(Near-Video-on-Demand)、非線性傳輸節目(nicht-linear verbreitetes Programm)。

 

  約一年半前歐盟就電視指令之規範,如何種經由網路傳輸之內容適用電視指令、廣告規範及來源國原則等議題加以討論;不具商業性之私人網站內容,如旅遊紀錄片,則不在本指令適用範圍。歐洲媒體法研究機構負責人Alexander Scheuer指出,類似YouTube網站,因其本身提供服務方式不涉及編輯性責任(redaktionelle Verantowrtung),故亦不在本指令適用範圍內;惟如YouTube將電視頻道引進其網站,則可能有適用本指令之餘地。Scheuer另外指出如何界定非商業性之難題,例如在個人儲存短片的網頁上打廣告,是否具商業性,值得討論。

 

  指令中最具爭議的部份,除新聞時事及兒童節目仍嚴格禁止置入性行銷(Product Placement)外,新電視指令有條件放寬業者經營置入性行銷,前提是節目播出前須向觀眾為置入性行銷之揭露,此項放寬將使正常節目進行因廣告而中斷。另外關於禁止速食廣告於兒童節目中播出之建議則未被採納。

 

  值得關注尚有適用來源國原則下對特定網站所發的禁制令問題,原則上對節目提供者只適用其來源國之法律,但指令第2a條明訂若有緊急情況(如內容違反青少年保護規定),可以對該特定網站發出制禁令,以防止規避會員國較嚴格之相關規定;而是否有緊急情況須提交委員會裁決。

 

  新電視指令通過後引起多方關注,未來適用上仍存有挑戰空間。

相關連結
※ 歐盟通過新電視指令, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2301&no=55&tp=1 (最後瀏覽日:2025/12/05)
引註此篇文章
你可能還會想看
美國對於聯網環境中「關鍵基礎設施」之資訊安全議題展開行動

  面對境外網路安全的風險,美國歐巴馬總統於2013年2月12日,正式簽署「改善關鍵基礎設施之網路安全」行政命令(Executive Order 13636–Improving Critical Infrastructure Cyber security),據該行政命令第二款,將「關鍵基礎設施」定義為,「對於美國至關重要,而當其無法運作或遭受損害時,將削弱國家安全、經濟穩定、公共健康或安全之有形或虛擬系統或資產」,遂採取相對廣義之解釋。該行政命令第七款,亦指示美國商務部「國家標準技術研究所」(National Institute of Standard and Technology, NIST),將研議ㄧ個提升關鍵基礎設施資通訊安全之架構(Framework to Improve Critical Infrastructure Cybersecurity),將美國聯邦憲法所保障的企業商業機密、個人隱私權和公民自由等法益納入考量。   針對關鍵基礎設施引發重要之法制議題,美國副司法部長Mr. James M. Cole表示,由於關鍵基礎設施影響所及者,乃人民在法律下的權益,公部門政府將在該項議題上與私部門共同合作(partnership),且未來將研議通過立法途徑(legislation),將隱私權和公民權保護(the incorporation of privacy and civil liberties safeguards)納入關鍵基礎設施資通訊安全法制之全盤考量,相關趨勢殊值注意。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

日本內閣所屬智慧財產戰略本部公布〈智慧財產推進計畫2021〉

  日本於2021年7月13日公布〈智慧財產推進計畫2021〉。〈智慧財產推進計畫〉為智慧財產戰略本部自2003年開始,每年持續修訂至今的行動計畫。今年最新公布的〈智慧財產推進計畫2021〉,指出日本企業在智財.無形資產的投資活動相較於其他國家有嚴重停滯之現狀,並提出今後智財戰略的7項重點施政: 促進智財、無形資產的投資及運用:藉由企業揭露自身的經營戰略,吸引投資者關注智財並投資,藉此建立智財交易環境。 推動「運用標準戰略」:數位化使產業結構改變,從傳統金字塔型價值鏈轉為以功能連結的階層模式;此轉變讓標準戰略成為建立市場競爭優勢不可或缺的手段。 建立促進數據活用的環境:例如制定跨領域合作的數據流通基礎方針,或是創建數位交易市場,將數據交易的價值可視化,藉此吸引投資。 建立著作權集中許可制度:為解決數位化所產生的權利處理成本問題,需建立可以快速處理龐大且多樣化的著作權集中許可制度。 強化智財權在初創或中小企業、農業領域的運用:例如提供企業智財布局的諮詢窗口、建立農業技術的商業機密保護制度。 強化支援智財運用的體制、營運和人才基礎:例如商標審查效率強化、實現各級學校智財教育的普及。 重建COOLJAPAN戰略:因應疫情後的社會變化,追加建立數位技術的運用,以確保COOLJAPAN戰略持續發展。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

何謂「日本A-STEP計畫」?

  日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。   研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。

TOP