歐盟27個會員國於5月24日在布魯塞爾通過新的電視指令(neue Fernsehrichtlinie),內容涉及「在線或離線電視服務(Fernsehen on- und offline)」、「廣告規範」及「來源國原則(Herkunftslandsprinzip:指跨國服務或商品依據來源國之標準處理。)」。新的電視指令乃源自於有18年歷史之電視指令,並重新命名為「影音媒體服務指令(Richtlinie über Audiovisuelle Mediendienste)」,指令內容包括線上直播節目、近似隨選視訊(Near-Video-on-Demand)、非線性傳輸節目(nicht-linear verbreitetes Programm)。
約一年半前歐盟就電視指令之規範,如何種經由網路傳輸之內容適用電視指令、廣告規範及來源國原則等議題加以討論;不具商業性之私人網站內容,如旅遊紀錄片,則不在本指令適用範圍。歐洲媒體法研究機構負責人Alexander Scheuer指出,類似YouTube網站,因其本身提供服務方式不涉及編輯性責任(redaktionelle Verantowrtung),故亦不在本指令適用範圍內;惟如YouTube將電視頻道引進其網站,則可能有適用本指令之餘地。Scheuer另外指出如何界定非商業性之難題,例如在個人儲存短片的網頁上打廣告,是否具商業性,值得討論。
指令中最具爭議的部份,除新聞時事及兒童節目仍嚴格禁止置入性行銷(Product Placement)外,新電視指令有條件放寬業者經營置入性行銷,前提是節目播出前須向觀眾為置入性行銷之揭露,此項放寬將使正常節目進行因廣告而中斷。另外關於禁止速食廣告於兒童節目中播出之建議則未被採納。
值得關注尚有適用來源國原則下對特定網站所發的禁制令問題,原則上對節目提供者只適用其來源國之法律,但指令第2a條明訂若有緊急情況(如內容違反青少年保護規定),可以對該特定網站發出制禁令,以防止規避會員國較嚴格之相關規定;而是否有緊急情況須提交委員會裁決。
新電視指令通過後引起多方關注,未來適用上仍存有挑戰空間。
OECD(經合組織)於2022年9月12日巴黎時間12時至17時召開第一支柱金額A(Amount A of Pillar One)的公開諮詢會議。蓋2021年10月,共137個成員同意自2023年啟用雙柱計畫(Two-Pillar Plan),OECD為提供能協助各國制訂相關內國法之「示範規則(Model Rules)」,已多次並持續公開徵詢意見。 其中,作為第一支柱的全球利潤分配稅制,係針對全球收入逾200億歐元且稅前淨利逾10%的大型跨國企業,定其逾10%的利潤為「剩餘利潤」,並取25%依關聯性(Nexus)重新分配至價值創造地,此剩餘利潤即本次會議欲討論之金額A。 一旦劃歸金額A將適用高達25%之稅率,故2022年7月11日,OECD所公布第一支柱的「進度報告(Progress Report)」,即針對如何計算大型跨國企業之全球總所得、如何量化系爭所得為金額A之稅基、如何定關連性原則以決定各價值創造地對金額A徵稅權之有無及高低、稅捐競合時如何避免對金額A造成雙重課稅,以及各該要件之定義等核心問題,列出7項標題(Title)作為本次會議討論重點。 然而,除了金額A徵稅權之跨國分配所涉利害關係錯綜複雜外,因各國稅制與發展不一致、美國對雙柱計畫之態度似有保留、歐盟成員國迄今仍無法達成一致共識,以及烏俄戰爭引發的通貨膨脹等各種內外因素,均為第一支柱示範規則之訂定,甚至雙柱計畫之實施增加了不確定性。準此,本次會議重要性不言可喻,值得我國持續注意。
何謂「Society 5.0」日本科技政策的制定依據來自日本「科學技術基本法」,該法第九條規定,要求國家在推動科技振興發展上,政府應制訂有關科學技術振興的「科學技術基本計畫」。「科學技術基本計畫」之推動以五年為一期,最近一期為第五期(2016-2020年),該期計畫以人工智慧與資通訊技術為核心,解決各式重要社會課題,打造「超智慧社會」,並命名為「Society 5.0」。 「Society 5.0」明訂日本實現超智慧社會的政策方向,其政策重點聚焦於產業創造與社會變革,並重新架構產業與整個社會的關係,因此,除了強化產業競爭力,實現產業變革以外,「Society 5.0」也規劃解決日本近年社會課題,包括老齡化社會、勞動力不足、能源短缺與自然災害等。而在前瞻性預測上,「Society 5.0」描繪20年後未來人類將生活在為高度電腦化、智慧化環境,為實現該目標,發展物聯網、大數據分析、電腦科學與技術、人工智慧與網路安全等相關科技基礎技術研發與應用,是「Society 5.0」的核心之一。 簡單來說,「Society 5.0」追求以人為中心的新經濟社會,運用高度融合網路虛擬空間及物理現實空間的相關技術,滿足未來人類生活上的各種需求,同步解決經濟發展與社會課題,並以此建構更貼近符合個人需求之社會。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。