美國參議院提出促進生技學名藥競爭法案

  生技藥品是植基於活體生物的原理所開發出來的治療藥品,自第一批生技藥品上市以來,其專利在最近幾年已陸續到期,因此生技業者對於推出這些生物製品的學名藥版本(generic versions of biologics,以下簡稱生技學名藥),躍躍欲試。然而,美國當前的學名藥法規—藥品價格競爭及專利回復法(Drug Price Competition and Patent Restoration Act, 又名Hatch-Waxman Act, HWA),乃是針對化學藥品的學名藥版本所制定的法規,此類學名藥與生技學名藥並不相同,因此既有的學名藥法規並不能適用於生技學名藥,生技業者無不引頸企盼政府部門通過新的法規,以使生技學名藥儘速上市。

 

  美國參議院最近提出一項生技學名藥法案—生技製品價格競爭與創新法(Biologics Price Competition and Innovation Act, BPCIA),一如HWA,BPCIA的內容也呈現出各種利益折衝的色彩,法案一方面賦予FDA對生技學名藥進行審核的新權限,並藉由減少臨床試驗之進行,加速生技學名藥的上市;另一方面,為避免低價的生技學名藥會對品牌藥的銷售產生衝擊,法案也有針對生技研發公司的研發誘因設計,以鼓勵其持續投入資金,開發更多的生技治療藥品。未來生技學名藥廠需要配合FDA所規劃的風險管理計劃(該計劃的相關立法目前尚待眾議院審議),故生技學名藥廠於其生技學名藥上市後,仍有進行臨床試驗之義務。

 

  法案中最具爭議的條文在於,究竟應給予生技研發公司多長的銷售獨家銷售權(market exclusivity),始得允許生技學名藥廠加入市場競爭,生技研發公司與生技學名藥廠對此的歧見甚大,前者主張十四年,後者則認為五年的時間已足,目前法案訂為十二年。另一個不易處理的議題,則是藥師如何處理此類的生技學名藥,根據目前的法案內容,未來藥師亦可不經徵詢醫師而以生技學名藥代替之。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國參議院提出促進生技學名藥競爭法案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2334&no=57&tp=1 (最後瀏覽日:2026/01/16)
引註此篇文章
你可能還會想看
英國展開醫療器材監管公眾意見徵詢並公布《人工智慧軟體醫材改革計畫》

  英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)於2021年9月16日展開期待已久的「英國醫療器材監管的未來」公眾意見徵詢(Consultation on the Future of Medical Devices Regulation in the United Kingdom),並公布「人工智慧軟體醫材改革計畫」(Software and AI as a Medical Device Change Programme)。英國欲從醫療器材上市前核准至其壽命結束進行監管改革,徹底改變一般醫療器材與人工智慧軟體醫療器材之監管方式。意見徵詢已於2021年11月25日結束,而該修正案預計於2023年7月生效,與英國針對醫療器材停止使用歐盟CE(Conformité Européenne, 歐洲合格認證)標誌並要求採用英國UKCA(UK Conformity Assessed, 英國合格評定)標誌的日期一致。   人工智慧軟體醫材改革計畫則包含十一個工作項目(work package,下稱WP),WP1與WP2分別為監管資格與監管分類,皆涉及監管範圍之劃定;WP3與WP4分別涉及軟體醫材上市前與上市後,如何確保其安全性與有效性的監管之研究;WP5針對軟體醫材之網路安全進行規範;WP6與WP7涉及加速創新軟體醫材審核上市之特別機制,分別為類似「創新藥品藥證審核與近用途徑」 (innovative licensing and access pathway)的機制,以及允許適時上市並持續研究監控風險的「氣閘分類規則」(airlock classification rule);WP8為確保智慧型手機之健康應用程式安全、有效與品質之規範研究;WP9~WP11則分別針對人工智慧軟體醫材之安全與有效性、可解釋性(interpretability)以及演進式(adaptive)人工智慧進行法規調適之研究。   MHRA預計透過指引、標準、流程之公布而非立法方式實現其監管此領域的目標。MHRA亦透露,針對上述工作項目,其已與重點國家和國際機構進行研究合作,已有不少進展即將公布。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

英國NCSC針對使用高風險供應商之電信網路提出風險管理建議

  英國於2020年1月31日正式脫歐,同時積極爭取與重要貿易夥伴美國簽訂自由貿易協定(Free Trade Agreement, FTA)。然而,美國認定中國大陸華為的5G設備存在資安風險,可能被用於間諜活動進而威脅國家安全,故主張美英貿易合作與情報共享的前提,必須建立在英國排除使用華為5G網路基礎建設之上,對此英國嘗試透過政策研擬,在5G經濟發展與國家安全間求取平衡。英國國家網路安全中心(National Cyber Security Centre, NCSC)於2020年1月28日,即針對使用「高風險供應商(High risk vendors簡稱HRV)」之電信網路,提出風險管理建議,說明如何因應HRV帶來的網路安全風險及挑戰(須注意高風險供應商HRV不一定是關鍵供應商Critical Vendor,必須透過關鍵與否及風險高低兩個變動因素加以細部區分)。目前英國5G及光纖到戶(Fiber To The Home, FTTH)計畫推動處於關鍵階段,NCSC向電信營運商提出有關使用HRV設備的非拘束性技術建議,將有助於保護營運商免於外部攻擊,並降低英國電信網路的國家安全風險。   NCSC在報告中,針對何謂高風險供應商,及如何管理這些供應商帶來的特定安全風險,提出詳盡判斷標準包括:供應商在英國及其他地區網路中的戰略地位及規模、對網路安全控管品質及透明度、過去商業行為及慣例、向英國營運商供應技術的穩定性及彈性等。另外供應商有無接受外國政府補貼及營業地點是考量重點:包括該廠商所屬國家政府機構對其施加影響之程度、是否具備攻擊英國網路能力、業務營運的重要組成部分是否受到本國法律監管,進而與英國法律相抵觸甚至進行外部指導等。   又為減少由HRV引起的網路安全風險,NCSC對於HRV控管提出具體建議。包括應限制在5G或FTTP網路核心功能中使用HRV產品及服務,並將高風險廠商供應上限設定為35%,有效進行網路安全風險管理,平衡安全性風險和市場供應多樣化彈性需求。另外,其他具備敏感性的網路營運模式,例如大量個資蒐集、語音系統、記錄備份系統、寬頻遠端接入系統(BNG / BRAS)等,必須根據具體情況,對HRV進行限制;且不得在與政府營運或重要國家基礎設施,及任何與安全系統直接相關的敏感網路中使用HRV設備。目前,中國大陸華為是英國NCSC唯一認定的HRV廠商,華為被禁止參與英國5G網路建設的核心部分且受有市占率35%的供應限制;華為亦需遵守NCSC要求,訂定風險緩解策略,確保產品及服務不致威脅英國網路即國家安全。

從歐洲法院實務看資料保護在智慧聯網時代下發展-以資料保存指令無效案和西班牙Google案為例

TOP