美國過去透過Hatch-Waxman Act之立法,建立起「簡易新藥申請」(Abbreviated New Drug Application,ANDA)制度,促使學名藥廠開發學名藥後,能較迅速地通過藥品查驗登記,且首家獲得ANDA上市許可的學名藥廠還可享有180日的市場專屬保障;但是,專利藥廠近年卻設計出授權學名藥(Authorized Generic Drug)、原廠學名藥(Rebranded Generic Drug)和專利與學名藥訴訟和解協議(Brand-Generic Litigation Settlement)等智慧財產權管理策略,用以瓜分專利到期後的學名藥市場。
為了矯正此種實務發展,今(2007)年初美國參眾兩院先後提出內容一致的「公平處方藥競爭法案」(Fair Prescription Drug Competition Act, S.438)和「修正聯邦食品藥品化妝品法禁止授權學名藥上市法案」(To amend the Federal Food, Drug, and Cosmetic Act to prohibit the marketing of authorized generic drugs, H.R.806),禁止專利藥廠自行或間接製造銷售原廠學名藥,或是授權第三人製造銷售授權學名藥,企圖透過立法方式,確保首家提出ANDA的學名藥廠,在其所獲180日市場專屬期間內,不會因專利藥廠利用推出原廠或授權學名藥之策略而稀釋掉該學名藥的市佔率。但本法案未禁止專利藥廠與獲得市場專屬保護的學名藥廠簽訂類似協議;假使該學名藥廠經商業判斷後寧願與專利藥廠簽訂協議,僅需依現行規範將該協議通報FTC和司法部即可。
美國參議院亦提出「保護可負擔學名藥取得法案」(Preserve Access to Affordable Generics Act, S.316),禁止專利藥廠直、間接簽訂給予ANDA申請者任何對價(不限金錢)且要求其不得研發、製造、銷售或販賣該學名藥之專利侵權訴訟和解協議;例如專屬給付和解協議(Exclusion Payment Settlement)、逆向給付和解協議(Reverse Payment Settlement)等。
本文為「經濟部產業技術司科技專案成果」
美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。
美國FTC認為政府擴大拜杜法權介入權適用範圍將引發專利叢林危機美國聯邦貿易委員會(Federal Trade Commission, FTC)於2024年2月6日針對「介入權指引草案」(Draft Interagency Guidance Framework for Considering the Exercise of March-In Rights)提交意見書。介入權指引草案由美國國家標準技術研究院(National Institute of Standards and Technology, NIST)2023年12月8日公布於聯邦公報(Federal Register),旨在訂立政府機關發動《拜杜法》(Bayh-Dole Act)第203條「介入權」(March-in rights)之判斷流程與標準,以確保介入權發動具一致性。根據草案內容,當受政府補助之研發成果若經商業運用後被以「不合理價格」販售,而未滿足民眾健康與安全需求時,提供補助之政府機關應適時介入。 然而,介入權指引草案將「價格合理性」納入介入權發動要件,被美國各界質疑係為達成拜登政府打擊藥價之政策目的,亦即透過擴大、強化介入權之方式,將「受政府補助之專利藥」強制再授權專利,以降低藥品價格。 FTC於意見書中亦對此爭議提出看法,認為美國人民就處方藥須支付不斷上漲之昂貴價格,雖然賦予各機關審查「價格合理性」,將使得介入權發動更為廣泛且靈活,並得以監督藥品價格。惟擴大、強化介入權仍有隱患,尤其製藥公司恐為了保護其藥品專利,因此擴大申請專利權範圍導致專利叢林(patent thicket)現象產生,例如除將活性成分申請專利外,另將製程、劑型亦申請專利,此為未來各政府機關應該共同解決之問題。
日本預計2019年10月起於東京、大阪實行智財調解制度根據日本特許廳調查,國際(如韓國,泰國)在處理智財爭議時,往往會傾向採取非訟的方式解決智財爭議,例如透過智財局進行智財調解。日本也預計在2019年10月1日起於東京及大阪兩地的地方法院導入新的智財調解制度,用以快速解決智財(例如專利權,著作權等)相關爭議。 普遍而言智財爭議往往會耗費企業或當事人相當長的時間,且爭議的智財標的在訴訟期間也無法被使用,故日本政府計劃推行新的智財調解制度。新的智財調解制度,除了能降低訴訟成本外,日本政府更迫切想解決的問題是,不希望爭議的智財標的影響企業經營。 在日本智財訴訟是公開,法官在聽過兩造說法後會由法官做單方面的判決,且根據日本最高法院的資料顯示,智財訴訟平均需花費十二點九個月的時間才能結案。有的從訴訟提起到一審宣判就需花費一年又八個月,再到最高法院判決確定還需花費一年又二兩個月。 而日本新推行的智財調解制度計畫將透過視訊的方式,讓當事人與法官進行非公開的對話,並儘量促成兩造達成合意,調解過程最短僅需花費約三個月的時間就能有結果,若調解沒有共識,當事人一樣能進行智財訴訟。智財調解制度除了能有效減少爭議時間外,費用上智財調解申請費也遠低於智財訴訟的申請費。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。 因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。 方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。