美國參眾兩院提出嚴禁專利藥廠簽訂授權學名藥協議系列法案

  美國過去透過Hatch-Waxman Act之立法,建立起「簡易新藥申請」(Abbreviated New Drug Application,ANDA)制度,促使學名藥廠開發學名藥後,能較迅速地通過藥品查驗登記,且首家獲得ANDA上市許可的學名藥廠還可享有180日的市場專屬保障;但是,專利藥廠近年卻設計出授權學名藥(Authorized Generic Drug)、原廠學名藥(Rebranded Generic Drug)和專利與學名藥訴訟和解協議(Brand-Generic Litigation Settlement)等智慧財產權管理策略,用以瓜分專利到期後的學名藥市場。

 

  為了矯正此種實務發展,今(2007)年初美國參眾兩院先後提出內容一致的「公平處方藥競爭法案」(Fair Prescription Drug Competition Act, S.438)和「修正聯邦食品藥品化妝品法禁止授權學名藥上市法案」(To amend the Federal Food, Drug, and Cosmetic Act to prohibit the marketing of authorized generic drugs, H.R.806),禁止專利藥廠自行或間接製造銷售原廠學名藥,或是授權第三人製造銷售授權學名藥,企圖透過立法方式,確保首家提出ANDA的學名藥廠,在其所獲180日市場專屬期間內,不會因專利藥廠利用推出原廠或授權學名藥之策略而稀釋掉該學名藥的市佔率。但本法案未禁止專利藥廠與獲得市場專屬保護的學名藥廠簽訂類似協議;假使該學名藥廠經商業判斷後寧願與專利藥廠簽訂協議,僅需依現行規範將該協議通報FTC和司法部即可。

 

  美國參議院亦提出「保護可負擔學名藥取得法案」(Preserve Access to Affordable Generics Act, S.316),禁止專利藥廠直、間接簽訂給予ANDA申請者任何對價(不限金錢)且要求其不得研發、製造、銷售或販賣該學名藥之專利侵權訴訟和解協議;例如專屬給付和解協議(Exclusion Payment Settlement)、逆向給付和解協議(Reverse Payment Settlement)等。

本文為「經濟部產業技術司科技專案成果」

※ 美國參眾兩院提出嚴禁專利藥廠簽訂授權學名藥協議系列法案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2366&no=66&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
歐盟出資贊助開放原始碼研究

  歐盟決定斥資 66 萬歐元的經費研究全球的開放原始碼軟體與標準。   歐盟在為期兩年的 FLOSSWorld 專案中,首度贊助的國際性開放原始碼軟體研發與政策發展計畫,先前的 FLOSS 專案主要只著重在歐洲的開放原始碼部分。 FLOSS 即為自由 / 開放原始碼軟體的縮寫 (free/libre/open source) ,藉由本專案,歐盟希望能夠強化歐洲在自由軟體領域的領導力,與增加國際合作夥伴。   FLOSSWorld 召集人 Rishab Aiyer Ghosh 向對外表示,歐盟通常是不贊助國際性專案的。而此次計劃共區分五大區域,而合作的國家包括中國 ( 東亞 ) 、印度與馬來西亞 ( 南亞 ) 、非洲 ( 南非 ) 、東南歐 ( 保加利亞與克羅埃西亞 ) 、中南美洲 ( 阿根廷與巴西 ) 。   研究將專注在三大領域:開放原始碼對於技能發展的影響,以及對經濟與新增職缺的影響;軟體開發的區域差異性;政府與公家單位對使用開放原始碼的態度。 Ghosh 指出 FLOSSWorld 的目標在增加國際層次的合作,增加對其他國家對於開放原始碼的使用與影響的了解程度。

美國眾議院通過網路保護法

  美國眾議院於2015年4月22日以307票同意,116票反對,通過網路保護法(The Protecting Cyber Networks Act)。本法之立法目的在於移除法規障礙,美國公司藉此將得以與其他公機關或私人分享資安威脅的相關資訊,以防範駭客攻擊。   本法之重點內容主要係為對於網路威脅指標與防禦辦法之分享。依網路保護法第102條與第104條之規定,分享的客體包括「網路威脅指標」(cyber threat indicator)與「防禦辦法」(defensive measures),分享之對象則分為非聯邦機構(non-Federal entities)以及(國防部或國安局之外的)適當之聯邦機構(appropriate Federal entities)。本法第102條規定,在符合機密資訊、情報來源與方法、以及隱私及公民自由之保護下,國家情報總監(the Director of National Intelligence, DNI)經與其他適當聯邦機構諮商後,應展開並頒布相關程序,以促進下列事項之進行:「(一)與相關非聯邦機構中具有適當安全權限之代表,及時分享(timely sharing)聯邦政府所有之機密網路威脅指標;(二)與相關非聯邦機構及時分享聯邦政府所有,且可能被解密並以非機密等級分享之網路威脅指標;(三)於適當情況下與非聯邦機構分享聯邦政府所有,且與該些機構即將或正在發生之網路安全威脅(cybersecurity threat)有關之資訊,以防止或降低該網路安全威脅所造成之負面影響。」   以及,對於隱私權與公民自由之保障亦非常重要,就隱私權與公民自由之保障,網路保護法主要在第103條第4項設有相關規定。對於資訊安全,該項第1款規定,依本法第103條之規定進行資訊系統之監控、執行防禦辦法、或提供或取得網路威脅指標或防禦辦法之非聯邦機構,應實施適當之安全管控,以保護該些網路威脅指標或防禦辦法免遭未經授權之近用或取得。同項第2款則更進一步規定了特定個人資料在一定條件下應被移除。該款規定,依本法進行網路威脅指標分享的非聯邦機構,於分享前應合理地對該網路威脅指標進行復核,以評估該指標是否含有任何令該機構合理相信(reasonably believes)與網路安全威脅非直接相關,且於分享時(at the time of sharing)屬於特定個人之個人資訊或指向特定個人之資訊,並移除該等資訊。

Regolith的試煉:太空物質私有化

  美國國家航空暨太空總署(National Aeronautics and Space Administration,NASA)向企業購買月球Regolith(岩屑層)與岩石物質,並於2020年9月提出《月球Regolith採購工作績效聲明》(Lunar Regolith Purchase Request Performance Work Statement)。惟月球的物質,是否可以開採?   依據《各國探索與應用外太空、月球暨其他天體之活動管理原則條約》(Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies)第2條,外太空、月球與其他星體,非任何國家可藉由使用、占領與其他方式,或應用國家經費,而宣稱擁有主權。針對NASA的月球物質採購計畫,是否合乎該條約?NASA署長Jim Bridenstine指出,Artemis計畫增加商業參與,要求企業蒐集小型的月球「塵埃」(dirt),或月球表面的岩石。Jim Bridenstine並認為此項提案,充分遵守該條約與其他國際義務。申言之,NASA認為月球之物質,具有私有化之可能性。   為採購企業蒐集之月球物質,NASA擬定《月球Regolith採購工作績效聲明》,規範企業的義務為:1、自月球表面蒐集50克至500克的Regolith或岩石物質;2、提供NASA蒐集與物質的影像,該資料足以識別蒐集地點為月球表面;3、就地(in-place)移轉NASA蒐集物質的所有權,此些物質並將成為NASA得以使用的私有財產(sole property)。企業得以決定在月球表面的任何地點蒐集,且無須評估蒐集的材料;NASA係採購蒐集狀態(“as-collected” condition),並有權利獨立確認企業蒐集物質的聲明。亦即企業的任務為採購物質,並提出證明;對月球物質的評估,則由NASA為之。   企業對NASA採購月球物質之履行,須於2024年以前完成;NASA對契約的獎勵,並不以月球物質蒐集的數量為基準。NASA對企業採購月球物質的支付依據:10%來自於企業完成NASA概念審查的提案;10%係企業為此蒐集任務,而由企業系統發射航空器至太空;80%為達成移轉NASA太空物質的所有權。另外,機器人登陸器(robotic lander)的設計與建構,並非屬NASA向企業徵集太空物質之內容。換言之,NASA之採購計畫並非強調太空物質之蒐集數量,而係著重於太空物質所有權之移轉。   綜上所論,NASA向企業採購月球Regolith與岩石物質,並以所有權之移轉為主,開啟太空物質私有化的可能性。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP