當個人隱私遇上公共利益--從個資法角度談市長候選人病歷外洩事件

刊登期別
2006年10月04日
 

※ 當個人隱私遇上公共利益--從個資法角度談市長候選人病歷外洩事件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2368&no=57&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
德國資料倫理委員會針對未來數位化政策之資料運用發布建議報告

  德國資料倫理委員會(Datenethikkommission, DEK)於2019年10月針對未來數位化政策中的重點議題發布最終建議報告;包括演算法產生預測與決策的過程、人工智慧和資料運用等。德國資料倫理委員會是聯邦政府於2018年7月設置,由多位學者專家組成。委員會被設定的任務係在一年之內,制定一套資料倫理標準和指導方針,作為保護個人、維持社會共存(social coexistence)與捍衛資訊時代繁榮的建議。   最終建議報告內提出了幾項資料運用的指導原則,包含: 以人為本、以價值為導向的技術設計 在數位世界中加強數位技能和批判性思考 強化對個人人身自由、自決權和完整性的保護 促進負責與善意的資料使用 實施依風險調整的監管措施,並有效控制演算法系統 維護並促進民主與社會凝聚力 使數位化戰略與永續發展目標保持一致 加強德國和歐洲的數位主權

美國參議員提案修改股票選擇權(stock option)租稅處理優惠

  美國參議員Carl Levin最近提出一項名為「終止公司股票選擇權租稅優惠法」(Ending Corporate Tax Favors for Stock Options Act, S. 2116,以下簡稱:股票選擇權租稅優惠終止法)的草案,主要目的是希望改變公司對於股票選擇權費用化的租稅處理(tax treatment of corporate stock option deductions)。   就租稅意義而言,公司發給員工(包括高階經理人及一般員工)的股票選擇權為薪資的一種,而根據美國內地稅法規定,目前公司在申報股票選擇權的薪資支出(compensation expense)減項時,可以申報的費用比公司帳簿上所登載的更高。由於此一稅法上獨厚股票選擇權的處理,使得近年來許多美國企業支付給主要高階經理人的薪資,有一大部分是股票選擇權,此現象在科技產業亦甚為顯著,其結果造成公司高階經理人與一般員工的薪資差距越益擴大。   「股票選擇權租稅優惠終止法」要求公司於薪資支出項下申報的股票選擇權費用,必須與公司帳簿所記載的數目一致,同時,股票選擇權也應與其他類別的公司薪資費用一樣,同樣受到1百萬美元的費用上限之申報限制,至於股票選擇權申報費用的時點,則不須要等到選擇權行使(exercise)的年度。

何謂「權利懈怠原則」?

  美國專利法中,權利懈怠原則係指當事人構成怠於行使權利之情形時,可作為專利侵權之防禦抗辯事由。目前美國專利法282條(b)款(1)項已將權利懈怠抗辯成文法化,聯邦最高法院相關判決之見解認為權利懈怠原則之目的為填補法律缺陷(filling the gap),主要針對法律條文並未明確規範時效時之特殊情況,考量到專利法第286條之規定以及聯邦最高法院曾於2014年Petrella v. Metro-Goldwyn-Mayer一案中判決權利懈怠不得作為美國著作權法第507條(b)款訴訟時效限制之抗辯理由。因此美國專利法上的權利懈怠原則並非訴訟時效限制(statute of limitations),而是侵權賠償時效限制(damage limitations)。此外,不會產生類似衡平禁反言之誤導當事人及造成該方後續損失之結果,基於兩者此一性質不同,也不會直接排除當事人持續權利金之權利資格。

OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

TOP