美聯社(The Associated Press, AP)於十月九日在「南紐約聯邦地方法院」(SDNY),正式地向世界權威的數碼核證服務供應商VeriSign及其子公司Moreover Technologies提出違反著作權與商標權等侵權訴訟。根據AP向法院所提出的起訴狀中主張七項訴因,內容以被告違反聯邦著作權法及紐約州的商標法等相關法律規定,其中包含VeriSign及Moreover Technologies製造出與AP的虛偽聯結( False Association)而違反了商標法案-Lanham Act等。AP在起訴狀中也主張因被告上開侵權行為及非法侵入AP的電腦主機而違反紐約州「非法侵入他人動產罪」(Trespass to Chattels)之行為,故同時請求聯邦法院准予核發永久禁止令,以禁止被告使用AP所有的新聞報導內容並刪除被告公司電腦內所有屬於AP所有之著作財產權。
本案被告之Moreover Technologies最早標榜透過網路新聞的搜集、分類及傳送的方式,成為提供即時新聞、當前知識及商業資訊之先驅,其在該公司的網頁上使用AP所有超過兩萬五千筆的新聞內容。而同案被告VeriSign,於二○○五年十月份以約略美金三千萬的現金將Moreover Technologies合併。AP的總裁暨執行長Tom Curley表示,任何未得AP之授權同意而自行搭載(Free Riding)使用AP所有之新聞內容之人,其行為已對新聞記者的著作財產權造成莫大的損失,AP從成立至今,已有三十二各新聞記者因公殉職。基於上開理由,AP向法院請求被告因侵權所獲得之利益及懲罰性損害賠償。
2025年11月,韓國公共行政安全部(Ministry of the Interior and Safety,下稱MOIS)於新聞稿宣布制定《公部門AI倫理原則》草案,追求公益、公平無歧視、透明、問責明確、安全性及隱私保護等六大核心價值,旨於促進創新、提升民眾對公部門應用AI之信任。 一、適用範圍 《公部門AI倫理原則》草案適用對象為公部門,包含中央、地方政府機關等,其性質為不具強制力的指引。 二、檢核表分三階段漸進式管理 《公部門AI倫理原則》草案依AI 應用的複雜程度分為三階段漸進式管理,設計最高達90個細項的檢核表(Checklist),惟目前尚未公開詳細內容: (一)第一階段:基礎導入(AI基礎應用) 針對技術引進的初步活用階段,共包含31個檢核項目,旨在建立基礎的倫理合規防線。 (二)第二階段:進階應用(AI決策支援) 適用於AI提供資料分析與建議以輔助人員進行行政決策的情境。隨著影響力提升,檢核項目擴增至74個,強化透明性與責任性的審查。 (三)第三階段:深度融合(AI自主決策) 針對AI具備高度自主決策權的高風險情境(如自主化服務或複雜判斷),執行最嚴密的倫理檢查,共達90個檢核項目。 建議公部門依檢核表自行檢查,並依結果建立「調整與回饋」的循環機制,以因應不斷變化的技術環境。 MOIS部長指出,未來將進一步蒐集學界意見以完備倫理原則,並開發一套AI倫理原則之培訓課程,確保一線能落實執行這90個檢核項目,保障人權與基本權利。 由於目前未見90個檢核項目內容,值得持續追蹤後續進展。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國參議員提案規範物聯網設備之資安漏洞美國參議員2017年08月01日提案立法,要求提供給美國政府的物聯網網路連結設備,須符合產業資訊安全標準,同時規範設備供應商,提供之設備必須可持續更新,不得含有無法更改參數的設定與不得具有任何已知安全漏洞。兩黨皆有參與提案參議員,共和黨為Cory Gardner和Steve Daines,以及民主黨的Mark Warner和Ron Wyden。 由於物聯網連結數持續成長,與物聯網相連的裝置與感應器,預計在2020年會超過200億台裝置,相關裝置的資料蒐集與傳輸,同時影響消費者與產業。當這些裝置在出廠時若預設無法更改的參數,即預設固定程式無法更新,則該裝置連接物聯網時,會因裝置無法更新程式,而可能產生資安漏洞,進而影響物聯網上其它連結設備之安全性。 2016至今,物聯網相關設備已被惡意阻斷服務攻擊(DDOS)影響相關網站、伺服器以及網路基礎設施提供者。 Warner等4位參議員提出的〈2017年物聯網資安改進法〉(Internet of Things (IoT) Cybersecurity Improvement Act of 2017)草案,主要關注: 聯邦政府採購的物聯網相關設備,須可持續更新、符合產業標準、不含無法更改內建參數的設定、以及不含已知安全漏洞。 行政管理和預算局(Direct the Office of Management and Budget ,OMB),須發展可供替代網路級(network-level)資安設備以供限制性資料處理。 國土安全部的國家保護和計畫局(National Protection and Programs Directorate)須向提供連線設備予聯邦政府的承包商,發布整合性的資安漏洞揭露指導原則。 免除資安研究人員基於誠實信用研究時,所揭露與資安漏洞有關之法規責任。 要求所有執行機構清點所有連結物聯網的設備。
何謂「工業4.0」?所謂工業4.0(Industrie 4.0)乃係將產品用最先進的資訊和通訊技術緊密結合。其發展背後的原動力是快速增長的經濟和社會的數位化。在德國,它不斷地在改變未來產品的生產及加工方式:自蒸汽機、生產線、電子和電腦技術之後,現在確認了「智慧工廠」(Smart Factories)乃是第四次工業革命。 德國「工業4.0」一詞源於2011年德國教育與研究部(BMBF)在其高科技策略(Hightech-Strategie)下的研發計畫。而如何落實工業4.0,則可從德國科學技術院(Deutsche Akademie der Technikwissenschaften, acatech) 與德國高科技策略之研究聯盟顧問委員會(Forschungsunion, Wirtschaft und Wissenschaft begleiten die Hightech-Strategie)共同提出之「工業4.0:實踐建議報告書」 (Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0)窺見整體計畫。 它的技術基礎是資訊科技、數位化的網路系統,藉由該系統,可以實現超強的自行組織運作的生產流程:人、機器、設備、物流和產品在工業4.0中,得以在同一個平台上相互溝通協作。不同企業間的生產及運送過程可以更聰明地以資訊科技技術相互地溝通,更為有效和彈性地生產。 如此一來將有助於產生智慧型新創價值的供應鏈,其囊括產品生命週期的各階段-從開發、生產、應用和維修一直到回收產品階段。藉此,一方面相關的服務可從客戶對產品想法一直到產品的回收都包括在內。因此,企業能夠更容易地根據個別客戶的要求生產定制產品。客製化的產品生產和維修可能會成為新的標準。另一方面,雖然是生產個性化商品但生產成本仍可以降低。藉由新創價值供應鏈相關企業的相互串聯,使產品不再只是各個流程得以優化,而係整體的創新價值鍊的整體最適化。如果所有資訊都能即時提供,一個公司可以儘早快速回應的某些原材料的短缺,生產過程可以跨企業地調整控制,使其更節省原料和能源。總體而言,生產效率能夠提高,加強企業的競爭力和提高生產彈性。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)