美國職業安全及健康研究院﹙NIOSH﹚是美國發展奈米科技的重要政府單位之一。近來,其頻頻透過國際組織的運作來處理與奈米科技有關之職業安全與健康影響問題。NIOSH首長John Howard表示,在國際層次上,科學家及決策者皆明瞭處理與奈米材料製造及產業使用所引致之職業病或職災,是當下最重要的工作之一。而由於NIOSH在促進世界性科學對話上,始終扮演者厥功甚偉的角色,因而在奈米科技發展初期,其亦積極協助此一科技能夠充分考慮安全及健康問題,發展出具全球協調性的技術方法,並有助於美國在國際市場的領先地位。而其近期主要成就在於以下三個部分:
1.今﹙2007﹚11月29日,經濟合作暨發展組織﹙OECD﹚人造奈米材料工作小組通過NIOSH-Led計畫,負責執行奈米材料暴露控制與測量等相關資訊之交換,同時透過領導小組,與會員國共同聚焦商討一些足以引起公眾意識的議題,例如在職業環境中之暴露測量與減輕。
2.其次,在今年12月4日至同月7日的國際組織會議中,ISO TC229表決通過有關奈米科技在職業環境之安全與健康規範的報告初稿,此報告係以NIOSH所發表一份名為“Approaches to Safe Nanotechnology”的報告作為基礎,而繼續由其發展與修正。本報告初稿送至ISO技術委員會審查,委員會認為報告內容涵蓋完整的技術性工作,且其未來影響將遍及全球,而為全球組織所關切。
3.此外,在今年12月2日,NIOSH另參與世界衛生組織﹙WHO﹚之職業健康合作中心全球聯網會議,當次會議之焦點在於奈米科技,會中NIOSH代表負責報告工程奈米粒子在職業安全及衛生上所遭遇之挑戰現況。本次會議中將決定WHO合作機制如何發展運作,以避免暴露於可能有害的工程奈米粒子。
整體而言,關於奈米科技之安全與健康影響及其相關應用的研究,NIOSH統整建置了一套策略性工作計畫,透過這些研究專門處理一些重要問題,包括某些對於評估風險及控制暴露極為有效的科學資訊。除了研究之外,NIOSH亦積極參與國際組織活動,可以預見其對奈米科技未來發展之影響將無遠弗界。
本文為「經濟部產業技術司科技專案成果」
昇陽公司本月十四日把 500 多萬行 Solaris 核心 (kernel) 的原始碼張貼在 OpenSolaris 網站上。不過,一些原始碼元件,像是安裝程式與管理工具,因為仍在逐行檢視以免專利侵權問題,稍後才會推出。 Solaris 是使用率相當廣的一種 Unix 衍生版本,在一九九○年代末期網路泡沫時期大行其道,但後來隨開原碼作業系統 Linux 竄起而式微。同時,微軟的 Windows 作業系統,也蠶食著昇陽的市占率。為了讓 Solaris 成為開放原始碼軟體,昇陽積極拉攏軟體開發人員,軟體開發人數增多,可能引來更多的使用者、更多的合作夥伴,以及更多的軟體開發者。然而,要與氣勢正旺的 Linux 競爭,並非易事。 Solaris 開發工程僅傾昇陽一家公司之力,但 Linux 幕後卻有廣大的開發人員社群支持。 Quandt Analytics 分析師 Stacey Quandt 說,與外部程式設計師分享權力,是昇陽必須通過的考驗。對昇陽來說,真正的挑戰是,昇陽是否真能容納局外人貢獻的修補程式,而且不叫昇陽經驗老到的工程師加以改寫。 OpenSolaris 是昇陽自行研發的專屬計畫,但不表示一定會失敗。 IBM 即曾經以 Eclipse 程式設計工具為中心,建立起活力十足的開原碼社群,就是成功的例子。昇陽雖來不及按原訂計畫在二○○四年推出 OpenSolaris ,但已推動一些配套措施,包括在今年一月發布稱為 DTrace 的元件,提供詳細的效能分析;吸引一百五十位外部程式設計人員參與 OpenSolaris 測試計畫;並成立由五人組成的社群顧問委員會,其中兩席是昇陽的代表。
論智慧科技裝置之法律問題—美國資訊隱私法制變革與發展 日本知名連鎖旋轉壽司發生營業秘密外洩爭議,顯示企業建立及持續推動內部機密資訊管理制度之重要性東京地方檢察廳於2022年10月21日以違反《不正競爭防止法》等為理由,起訴被告「かっぱ寿司」之營運公司「カッパ・クリエイト」公司(下稱Kappa壽司)及其前社長田辺公己(下稱田辺)等。因本案牽涉上市企業的前社長,故引起日本社會極大關注,東京地方法院已於2022年12月22日召開首次審理庭。 本案被告田辺在1998年加入「はま寿司(下稱Hama壽司)」之母公司,並於2014年到2017年間擔任Hama壽司董事;嗣後在2020年11月時,轉職至Kappa壽司。雖然田辺在離職時已簽署保密協議,但在離職前後數月間,持續透過不正當方式,取得Hama壽司之食材成本及其供應商等資訊,同時更指示仍任職於Kappa壽司之部屬製作Kappa壽司與Hama壽司之成本對照表,並以郵件方式提供被告,被告再於Kappa壽司內部使用。 雖然Kappa壽司嗣後發表公開聲明,強調並無跡象顯示該公司曾依據相關成本對照表,進行開發新產品或更換批發商等措施,但田辺在審理庭上,已承認指控,而且在被捕時,曾坦言行為動機為希望提高業績。 對於本案,有日本輿論指出海外因應人員轉職較頻繁,對於機密資訊之管理,通常訂有較嚴格的規定,惟日本目前欠缺相關觀念;亦有論者認為因為必須符合營業秘密之法定要件,始受《不正競爭防止法》之保護,故強調機密管理對於保護商業秘密及針對機密外洩之法律救濟的重要性。從本案觀之,任何產業類型的企業都可能會有屬於營業秘密的資訊,為維護企業的商業競爭力,避免因營業秘密外洩影響公司營運,企業應建立及持續推動內部機密資訊管理制度,並因應社會與管理環境變化等,精進管理模式。同時應定期進行教育訓練,提高人員的機密保護意識,強化營業秘密外洩事件發生時的舉證,以有效的主張權利。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。