因應京都議定書,經濟部日前引用學界研究報告發現,我國若依議定書原則達成溫室氣體減量目標,總計需投入經費達五八七八億元至八七○八億元。為達成這項目標,政府採取提升能源效率的作法,比直接課徵碳稅,對國內經濟衝擊力道較小。
根據國際能源總署公布資料顯示,台灣CO2排放總量達二億一七三○萬公噸,人均排放量達九.八公噸,皆高於全球平均值,每單位CO2排放所創造的GDP為一.八九(美元/公斤CO2)也較OECD等先進國家平均值低。
經濟部內部歸納CO2減量效果不佳的原因,除政策上採非強制處理態度外,過去十年間,石化、鋼鐵等高耗能產業結構調整緩慢,加上半導體及液晶面板等大量使用全氟化物、六氟化硫的產業訊速成長,使得工業製程中排放的CO2等溫室氣體大幅成長更是主要原因。
依京都議定書條約精神及國際環保現況,我國與南韓同屬網要公約非附件一成員中的「新興工業國」,成為公約下一階段管制對象。致使抑制國內激增溫室氣體排放量已成為我國政府迫切須處理的課題。
在經濟部這份內部研究報告中,也引用臺灣大學農業經濟系教授徐世勳等學者的研究推估,如果台灣要達到京都議定書的要求,將CO2排放量控制在一九九○年水準,則減量成本將達新台幣五八七八億元至八七○八億元。
而學界的這項研究也針對開徵碳稅稅率不同對台灣經濟影響進行評估,推估當對每公噸CO2排放課徵六○○元碳稅時,對經濟成長衝擊為負○.六%,調高至七五○元時,所造成的衝擊則更達負○.七一%。
本文為「經濟部產業技術司科技專案成果」
2022年11月美國OpenAI公司推出人工智慧大型語言模型ChatGPT,提供全球使用者透過輸入文本方式向ChatGPT提出問題,雖營業秘密不需絕對保密,惟是否會「因向ChatGPT揭露營業秘密而使營業秘密喪失了秘密性」? 依OpenAI公司「非API訪問數據政策」規定,ChatGPT透過OpenAI公司的AI訓練人員審核「使用者上傳至ChatGPT的資訊」,提供ChatGPT反饋,強化ChatGPT進行有效的學習,讓ChatGPT模仿人類語言回覆使用者所提出的問題。在AI訓練人員未將「使用者上傳至ChatGPT的資訊」交由ChatGPT訓練、學習前(上次訓練是在2021年9月),此聊天內容不會成為ChatGPT給其他使用者的回答,此時資訊對於公眾仍具秘密性。依據ChatGPT的使用條款第5(a)條之單方保密義務規定:「OpenAI公司、其子公司及其他第三方公司可能賦予使用者『機密資訊的接觸權限』,但使用者僅限於使用條款所允許的服務中使用該些機密資訊,不得向第三方揭露該機密資訊,且使用者至少應採取合理的注意保護該機密資訊。所謂機密資訊係指OpenAI公司、其子公司及其他第三方公司(1)指定的非公開資訊,或(2)合理情況下,被認定為機密資訊者,比如軟體、規格及其他非公開商業資訊。」。即ChatGPT對於使用者輸入的聊天內容不負保密義務。 公司將程式碼、會議紀錄等敏感資訊與ChatGPT共享,不必然屬於「因揭露營業秘密而使營業秘密喪失秘密性」,考量訓練數據量大,秘密性取決於周遭環境與揭露性質,例如: 1.揭露的資訊類型,比如飲料配方可能會比客戶名單更容易取得。 2.揭露的環境,比如競爭對手、大眾是否能提出具體問題,以致能取得他人聊天內容的營業秘密。 為在ChatGPT的趨勢下確保營業秘密的秘密性,建議企業採取的管理策略如下: 1.透過「資訊分類」以識別可共享的資訊。 2.審核涉及敏感資訊的協議、公司政策及供應商契約。 3.採取實體、數位的資訊保密措施,並留意尊重員工隱私,比如限制接觸某些網站或應用程式,應留意員工的手機是否能繞過此限制。 4.建立公司保密文化,如透過公司培訓、新人入職教育訓練,定期提醒其應負擔的保密義務。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。
美國德克薩斯州聯邦北區地方法院駁回德國汽車零組件供應商大陸集團對Avanci授權SEP模式違反反托拉斯法訴訟美國德克薩斯州北區聯邦地方法院於2020年9月10日,駁回德國汽車零組件供應商大陸集團(Continental Automotive Systems)針對高通、諾基亞、夏普及其他電信公司透過Avanci授權標準必要專利(Standard Essential Patents, SEP)模式違反反托拉斯法的訴訟。法院指出,Avanci是由SEP專利技術擁有者組成的專利授權平台,而Avanci繞過零組件供應商,直接與汽車製造商就授權協議進行談判,並未違反反托拉斯法。 按大陸集團係依據《休曼法》(Sherman Antitrust Act)第2條提出反壟斷訴訟,指Avanic及其成員濫用標準制定的壟斷力量,排除其他技術擁有者並提高專利授權費用。對此,法院列舉聯邦第九巡迴法院在FTC v. Qualcomm案的相同看法指出,該行為是屬於Avanic及成員的契約問題,即SEP持有人可以選擇依照公平、合理、無歧視(Fair, Reasonable, Non-discriminatory, FRAND)的契約方式限制SEP授權,但違反此契約義務並不違反反托拉斯法。大陸集團主張SEP持有人違反FRAND授權承諾,欺騙標準制定組織,從而將專利納入產業標準;但即使這種欺騙會將被告的競爭者排除在標準之外,乃是針對競爭者本身而不是對競爭過程的損害,SEP權利人藉由價格歧視(Price Discrimination)合法地將專利價值最大化並不違反反托拉斯法。 另外,原告控訴依據還包括《休曼法》第1條,禁止事業以契約等方式限制競爭。但法院認為Avanci授權模式是與組成公司間協議訂定,該協議並不會阻止成員向非製造端客戶單獨授權。在SEP授權人拒絕與原告進行談判,或僅同意以向汽車製造商授權的相同價格與零組件供應商進行交易,頂多屬於SEP權利人間的個別行動,並未違反反托拉斯法,因而駁回訴訟。
美國普及服務再革新—由醫療照護服務主導的寬頻佈建計畫從2006年開始,FCC所推出的「偏遠地區醫療照護領航計畫」 (Rural Health Care Pilot Programs),扶植其國內50個不同的醫療照護寬頻網路。此計畫不僅強化了美國對於遠距醫療照護技術的需求,更被寄望發展成為一高效能之寬頻服務。而計畫中「聯盟」 (consortium-focused)的概念,更促進了城鄉醫療團隊的合作(rural-urban collaboration)。除了減低申請普及服務補助時所需花費之行政成本外,更提升了醫療業者購買所需頻寬時的議價地位。 不過美國政府並不以此為滿足,為進一步改善整體計畫的實施效益, FCC於2012年12月再次針對醫療照護普及服務進行新階段的革新,並提出「醫療照護網路基金」 (Healthcare Connect Fund),以取代原有之領航計畫(Pilot Program)。「醫療照護網路基金」規劃的目的,在於提供計畫參與者更多的彈性,以規劃其本身的網路。業者可透過購買所需之寬頻服務、自行佈建寬頻基礎建設或混合上述兩種方式,取得所需之頻寬。不過FCC亦訂定資格限制以及審查機制。目前僅有具備一定經濟規模的醫療聯盟,可自行佈建寬頻基礎建設,獨立醫療業者並不具佈建之資格。另外,FCC亦要求醫療業者須提出詳細證明,以供主管機關審查。審查文件中需證實所得頻寬資源,是透過公正的招標機制後,所採行最具成本效益之決定。 普及服務的延伸就如同規劃渠道,將水源引向一片匱乏與困境的孤島。美國在面對偏遠地區醫療資源的匱乏,以及該地醫療業者的困境時,運用寬頻網路來傳遞病患所需的服務,也透過城鄉醫療業者的結盟,讓城市醫療團隊所發展的技術,得以與偏遠地區藉提供服務後所得的實證資料,透過網路互通流通,甚至允許醫療業者佈建基礎寬頻建設,以提供更完善的服務。普及服務的概念,不應該偏離電信基礎建設的佈建,但更上一層樓的是以滿足人民基礎生存權利之必須所主導的概念。
英國期望透過資料使用與近用法案修正案,強化數位證據資料之可信任性英國於2024年11月提出資料使用與近用法案(Data (Use and Access) Bill)修正案,其修正內容包含強化數位證據資料之可信任性。 根據英國數十年來的法院判決,可以觀察到英國法院信任電腦自動產出的資料,因此除非當事人提出反證,否則將推定電腦證據是可信賴的。然而,該見解導致英國爭議案件「郵局Horizon系統出錯案」的發生,亦促使資料使用與近用法案修正案的提出。 資料使用與近用法案修正案於第132條新增與數位證據相關的條款,同條第1項規定由電腦、裝置或電腦系統產生的數位證據,符合下列規定者,於訴訟程序中可以作為證據。 a、 數位證據以及產生數位證據或衍生數位證據之系統之可信任性未受質疑。 b、 法院確信無法合理地挑戰系統之可信任性。 c、 法院確信數位證據源自可信任的系統。 此外,同條第4項規定第1項第c款所指之可信任的系統,應包括適用於系統運作的任何指示或規則,以及為確保系統中保存的資料的完整性而採取的任何措施。 綜上所述,英國逐漸扭轉過去英國法院認為由電腦自動產生的資料具有可信任性之見解,並透過資料使用與近用法案修正案修正對於數位證據的認定,未來在涉及數位證據的案件中,檢辯雙方需要證明作為數位證據的資料完整性具有可信任性。 我國企業如欲強化數位資料的可信任性,可參考資訊工業策進會科技法律研究所創意智財中心所發布之重要數位資料治理暨管理制度規範(EDGS),建立並落實數位資料管理流程,除可確保數位資料的完整性及正確性具有可信任性,亦可提升法院採納數位資料作為證據之可能性。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}