達成京都議定書減量目標 提昇能源效率比課碳稅衝擊小

 

 

  因應京都議定書,經濟部日前引用學界研究報告發現,我國若依議定書原則達成溫室氣體減量目標,總計需投入經費達五八七八億元至八七○八億元。為達成這項目標,政府採取提升能源效率的作法,比直接課徵碳稅,對國內經濟衝擊力道較小。


  根據國際能源總署公布資料顯示,台灣CO2排放總量達二億一七三○萬公噸,人均排放量達九.八公噸,皆高於全球平均值,每單位CO2排放所創造的GDP為一.八九(美元/公斤CO2)也較OECD等先進國家平均值低。


  經濟部內部歸納CO2減量效果不佳的原因,除政策上採非強制處理態度外,過去十年間,石化、鋼鐵等高耗能產業結構調整緩慢,加上半導體及液晶面板等大量使用全氟化物、六氟化硫的產業訊速成長,使得工業製程中排放的CO2等溫室氣體大幅成長更是主要原因。


  依京都議定書條約精神及國際環保現況,我國與南韓同屬網要公約非附件一成員中的「新興工業國」,成為公約下一階段管制對象。致使抑制國內激增溫室氣體排放量已成為我國政府迫切須處理的課題。


  在經濟部這份內部研究報告中,也引用臺灣大學農業經濟系教授徐世勳等學者的研究推估,如果台灣要達到京都議定書的要求,將CO2排放量控制在一九九○年水準,則減量成本將達新台幣五八七八億元至八七○八億元。


  而學界的這項研究也針對開徵碳稅稅率不同對台灣經濟影響進行評估,推估當對每公噸CO2排放課徵六○○元碳稅時,對經濟成長衝擊為負○.六%,調高至七五○元時,所造成的衝擊則更達負○.七一%。

 

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 達成京都議定書減量目標 提昇能源效率比課碳稅衝擊小, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=262&no=57&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
ITU研議修改國際電信規則

  ITU國際電信聯盟秘書長Dr. Hanmasoun I Toure於2012年5月一場在加拿大舉行的無線通訊座談會中,針對之前國際上傳言聯合國與ITU將嘗試介入管理網際網路之說法進行澄清,並主張自1988年修改沿用至今的國際電信規則(ITRs)已不能應付目前新興之電信商業模式。   新型態的電信商業模式引發網路中立爭議的戰火,已延燒多時。從前的網際網路服務供應業者(ISP),主要遵守網際網路協定,扮演好笨水管(Dum Pipe)的角色。但隨著網際網路內容與各類應用服務的急速成長,各類封包的傳輸加重了原有管道的乘載負擔,再加上網際網路管理技術的演進,業者可透過網管技術對資訊封包的傳輸做更細緻的調節,逐漸形成內容傳輸優先次序差異化的新興商業模式,並且持續發展中。   依目前的技術能力,網際網路中任何內容傳輸的速度,皆能透過寬頻管理機制(QoS)進行調節。過去,QoS在國際通訊上,於各國的終端網路中進行調節工作。但現有的封包式的網路傳輸架構(packet-base networks)動搖了原有的秩序,不僅質量參數(quality parameters)大部分未受明確定義,QoS的角色也逐漸模糊。導致各系統本身無法完全控制跨網資訊傳輸的品質,影響各類服務在使用者的終端設備上所呈現的服務品質。對於需與固網或各類終端設備連結的行動通訊業者而言,如何解決這類問題儼然已成了燃眉之急。   目前ITU剛結束於日內瓦的年會,從會中委員會對其文件是否具備國際效力之議題討論,不難看出ITU對於網際網路管理態度已由被動態度轉為積極。未來ITU更期望,藉由年底舉行2012年國際電信世界大會(WCIT-12),重新修訂舊有國際電信規則(ITRs),引領網際網路的新秩序。

法國法院裁定亞馬遜網路書店(Amazom.com)停止書籍免運費之活動

  法國書商聯盟(Syndicat de la librairie française),於2004年一月對美國知名電子商務業者-「亞馬遜網路書店」(Amazon.com)所提出之違法書籍折扣及低於售價的訴訟,法國法院於今年十二月初做出裁定。該法院命令Amazon.com應於收到判決十天內對於所售出之書籍開始收取運費,否則必須受到每天一千歐元的罰款至該公司停止該不收取運費之行為止。同時該判決亦命令,Amazon.com應支付給原告書商聯盟十萬歐元的損害賠償金。   法國政府對於零售價格之法律規定十分嚴格,尤其對於書籍的零售。在法國,商家利用「價格犧牲」(Loss-Leaders)的促銷方式或其他低於產品價格的方式吸引顧客係為違法之行為;因此該國法律規定,關於書籍的零售商依法必須不得以低於出版商建議售價百分之五的價格出售書籍。Amazon.com所提供之折扣已經超過法國法律所規定之上限,故法國書商聯盟為保障其會員之權益,特別對該網站提出訴訟,以保護獨立小型書店之營運。Amazon.com尚未對上開判決發表正式的官方意見。

大陸專利申請數量超越美日 成世界第一

  根據世界智慧財產組織(World Intellectual Property Organization, WIPO)2012年12月發布的報告,中國大陸的專利申請數量於2011年首度超越美國,成為全球最大的專利申請國。這個頭銜在過去的一百年間,只有德國、日本和美國擁有過。   中國國家知識產權局是目前全球最大的專利(商標)局,其所受理的專利、實用新型專利、設計專利以及商標申請數量繼2010年超越日本後,於2011年更進一步達到52.6萬件,超越美國的50.4萬件成為全球第一。事實上,中國大陸商標的申請數量自2001年起就已是全球首位,而設計專利更早在1999年就達到此紀錄。WIPO的理事長Francis Gurry表示,雖然僅比較各國專利申請數量的多寡並不代表一切,然而這個數據仍某種程度的顯示了創新板塊移轉的趨勢。   WIPO報告指出,2009年至2011年,全世界的專利申請數量增加了29.4萬件,其中中國知識產權局占全球成長的比重達72%;且2011年全球的專利申請總數達到214萬件,首度突破二百萬大關,相較於2010年成長了7.8%,是連續第二年成長率高於7%。這些數據顯示出儘管近年經濟低迷,全世界在智慧財產權的申請數量上仍呈現高度穩定的成長。   該報告亦指出,2011年中國大陸根據「專利合作條約」(Patent Cooperation Treaty, PCT)所提出的國際專利申請總數排名第四,僅次於美國、日本以及德國,計有1萬6000餘件,較2010年成長33.4%,是全球增長最快的國家。其中,中國的中興通訊(ZTE Corporation)以2826件專利申請,超過日本松下榮登全球公司專利申請量榜首;華為(Huawei Technologies Co., LTD)則以1831件排名第三。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP