京都議定書效應 核電乾淨能源鹹魚翻身

 

 

  京都議定書實施後,號稱最乾淨能源的核電,反而有利於環境;而台灣燃煤電廠密度列世界前茅,是否有必要再檢討「非核家園」政策,值得觀察。


   調查顯示,美國除了將要提前除役的核電廠延役外,芬蘭、韓國、日本都有建新核電廠的計畫,中國大陸更將以一年一座核電的速度,持續到 2020 年,美國奇異公司、法國、甚至韓國都有意分食這塊大餅,就連台灣反核的師法對象德國,都有改弦易轍的打算。


   另外,根據國際原子能委員會推估, 2020 年前全球將有超過 60 座的核電廠上線運作,將全球核電廠的數量推升到 500 座,這些核電廠大多分布在亞洲。


   目前台灣燃煤發電廠密度名列世界前茅,不論是二氧化碳及汞汙染都十分嚴重,面對京都議定書,燃煤電廠勢必不能再增加,不必將核能發電排除在未來選項中。面對京都議定書所造成的新論點,及國際能源不斷上漲的新趨勢,台灣在六月份全國能源會議中該訂定新的能源比例,不必特別排除核能發電,並發展再生能源,另外,在鼓勵汽電共生政策中,該特別鼓勵天然氣電廠,以減少燃煤電廠比例不斷上升。

 

本文為「經濟部產業技術司科技專案成果」

※ 京都議定書效應 核電乾淨能源鹹魚翻身, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=265&no=66&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
截圖也違法,日本著作權法擬擴大違法下載之態樣

  日本文化廳文化審議會著作權分科會於2018年2月13日,出具分科會報告書,內容說明著作權法修正之方向。書中提及「重新檢視並修正違法下載之態樣」一點,擬將違法下載之態樣及動作,由「影音」擴及到所有靜態圖文(如漫畫、照片、小說、雜誌及論文等),「下載」擴及「截圖」(スクショ,screenshot)。   此次修法,起因於近來日本大量出現線上盜版漫畫網站,推估其半年所造成之損失可達4000億日幣以上。該報告書公布後,隨即湧現大量反對之聲浪。反對者認為修法之弊大於利,日本漫畫學會對此發表反對聲明,會長竹宮惠子對於修法表示憂心,認為修法將導致以下問題: 阻礙創作研究(如二次創作); 創作萎縮(日常下載及剪輯將被禁止); 難以判斷網路靜態圖文是否為違法上傳; 即使「下載」違法化,仍然無法根除線上盜版漫畫流通平台。   報告書中亦提及,在個人部落格及需加入會員之社群網(SNS)上傳或下載未經著作權人同意而公開之著作,亦屬違法。倘若為全書掃描上傳等惡性重大之行為,應科以刑責。   針對上述疑慮,報告書中的確未排除修法後將造成著作物在網路上利用萎縮之可能,然仍強調應透過官民間之合作努力,傳達正確之修法内容。並由出版社端導入「ABJ Mark」,推動正版漫畫流通平台,透過科技推動盜版網頁近用警示制度,使大眾知悉其行為即將侵害著作權等。由於法令修正之内容,影響人民日常生活甚鉅,後續修法將在各團體間如何折衝,上述措施能否普及或啟發人民觀念,值得後續持續關注。

美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act)

  美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。   聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。   政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。   因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下: 第3502條中定義了資料資產(data asset)、開放政府資料資產(open Government data asset)、機器可讀性(machine- readable)和開放授權(open license)等。其中,「開放授權」之定義首次見於本法條文中,係指將資料資產開放供公眾近用時,針對該資料資產提供以下法律保障(legal guarantee),包含:允許公眾在毋須支付任何成本即可使用(at no cost to the public),而對於該資料資產的重製、發布、散布、傳播、引用,或改作皆不會受到限制。 聯邦政府向公眾釋出資料集時,除因智慧財產權之規定外,原則上不得加諸任何限制而影響到人民對於該資料的使用或再利用,並應以機器可讀格式(machine-readable)、開放格式(Open Format)、開放標準(Open Standard)的基礎下提供。 要求聯邦政府利用開放資料來強化其決策機制。 要求美國政府審計辦公室(Government Accountability Office, GAO)透過定期監督,來確保聯邦政府的問責制運作(accountability)。意即,GAO應向國會提交一份報告,該報告總結對機關的調查結果和趨勢,並給予其適當建議。(美國政府審計辦公室之角色為國會的監督審計機構,係立法部門的一部份,主要職責為協助、改善聯邦政府所訂的各項計畫及政策,向國會提供客觀、平衡的資訊。) 在第3520條、3520A條中,規範聯邦機構須編制首席資料專員(Chief Data Officers, CDO)及首席資料專員理事會(CDO Council),負責資料治理和執行其職責,並確保該機構遵守本法。

AI 創作是否能獲得著作權?——Thaler 訴美國著作權局案解析

AI 創作是否能獲得著作權?——Thaler 訴美國著作權局案解析 資訊工業策進會科技法律研究所 2025年04月16日 美國哥倫比亞特區聯邦上訴法院於2025年3月18日裁定Stephen Thaler博士與美國著作權局的上訴案,認為AI繪圖作品無法受著作權保護,因為AI並非自然人,無法成為作品作者或進行「職務上創作」。此判決再次確認了美國對AI創作無著作權保護的立場。[1] 壹、事件摘要 此案起源於2019年,Thaler博士為AI繪圖作品「A Recent Entrance to Paradise」向著作權局申請著作權登記,但因AI非自然人創作者,著作權局於2022年駁回申請。[2]Thaler博士認為,這違反憲法對創作的保護,並主張其研發之AI系統「Creativity Machine」為作者,而其本人則透過AI的「職務上創作」享有著作權。Thaler博士不服2023年聯邦地方法院判決而提起上訴。[3] 貳、重點說明 從美國哥倫比亞特區聯邦上訴法院之判決觀之,本案爭點在於: 一、AI是否符合著作權法「作者」之定義:即AI生成作品是否滿足「原創性」與「獨立創作」標準;美國著作權法是否允許非人類創作者擁有著作權? 二、AI作品歸屬問題:Thaler博士主張AI創作之著作權應歸屬於開發者,或透過「職務上創作」使其本人取得著作權。然自然人與AI間關係;是否適用於人類創作者與雇主間法律關係;AI是否能被視為僱員? 上訴法院認同著作權局於2023年3月16日發佈之《AI生成作品著作權登記指引》,該指引強調著作權目前僅保護自然人創作。AI獨立創作或主導作品表達情況無法獲得著作權保護,即使使用者透過指令或調整輸出,亦無法改變此原則。經審查,法院認為因著作權法規定涉及生命週期、由自然人將作品視為遺產繼承,與創作意圖等概念,顯示立法者設定作者應為自然人。本案係爭作品仍由AI獨立創作,Thaler博士僅在初始階段下達指令,故不符「原創性門檻」(Threshold of Originality)之標準。[4] 職務上創作方面,該適用於人類創作者與雇主之間的法律關係,而AI並非法律上自然人,故無法簽署雇傭合約成為員工。[5]綜上,Thaler博士無法透過以上方式取得作品著作權。法院支持著作權局之裁定與意見,認為無需討論至憲法層面問題,僅就目前著作權法是否涵蓋AI自主創作作品及足夠。 參、事件評析 我國智財局已於2023年6月16日發布函釋[6],說明生成式AI模型生成內容是否為獨立之著作而受著作權法保護,視有無「人類精神創作」決定,目前與美國立場相似。美國聯邦上訴法院此次判決,確認AI無法成為著作權的作者,著作權保護僅限於人類創作者。雖然此判決不影響人類使用AI創作,但未來若要改變本案不保護AI自主生成的純機器作品的立場,或許不會從著作權法著手,而是透過立法方式創設新的法律權利來應對。美國國會與著作權局仍在持續研究AI相關法律,如2024年4月美國眾議院司法委員會舉行聽證會[7],討論AI輔助創作與發明的智慧財產權問題,會上專家認為現行法律已涵蓋大部分AI相關議題,新增著作權法規可能增加複雜性並抑制創新。資策會科法所目前持續協助國科會、國發會、文化部等政府部會,觀測研析AI著作權國際法制發展,後續將針對AI在文化藝術運用的著作權等風險與因應提供創作人指引,並因應行政院發展我國主權AI的政策,研提資料取得困境的法制面解決建議。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Thaler v. Perlmutter, 23-5233, (D.C. Cir. 2025), https://law.justia.com/cases/federal/appellate-courts/cadc/23-5233/23-5233-2025-03-18.html (last visited Mar. 26, 2025) [2]Re: Second Request for Reconsideration for Refusal to Register A Recent Entrance to Paradise (Correspondence ID 1-3ZPC6C3; SR # 1-7100387071), U.S. Copyright Office Review Board,https://www.copyright.gov/rulings-filings/review-board/docs/a-recent-entrance-to-paradise.pdf(last visited Mar. 26, 2025) [3]US appeals court rejects copyrights for AI-generated art lacking 'human' creator, https://www.reuters.com/world/us/us-appeals-court-rejects-copyrights-ai-generated-art-lacking-human-creator-2025-03-18/?utm_source=chatgpt.com(last visited Mar. 26, 2025) [4]Copyright Registration Guidance: Works Containing Material Generated by Artificial Intelligence, 88 Fed. Reg. 16,190, 16,192 (March 16, 2023), https://www.skadden.com/-/media/files/publications/2023/03/copyright-office-issues-guidance-on-ai-generated-works/formalguidance.pdf (last visited Mar. 26, 2025) [5]許慈真,美國聯邦地方法院判決Thaler v. Perlmutter : AI生成作品不受著作權保護,2023年9月20日,北美智權報,https://naipnews.naipo.com/9074 (最後點閱時間 : 2025年3月26日)。 [6]智財局函釋(2023年6月16日經授智字第11252800520號函),https://topic.tipo.gov.tw/copyright-tw/cp-407-855070-f1950-301.html (最後點閱時間 : 2025年3月26日)。 [7]HEARING BRIEF: Judiciary Subcommittee Hearing on Artificial Intelligence and Intellectual Property – IP Protection for AI-Assisted Inventions and Creative Works, April 10th, 2024, https://infojustice.org/archives/45692?utm_source=chatgpt.com (last visited Mar. 26, 2025)

日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」

  2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。   本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。   報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。

TOP