美國政府近年來為預備恐怖活動積極部署國家安全相關措施,包括運用出口管理規則(Export Administration Regulations)監控軍商二用技術及產品(dual-use items)之輸出;然而在維護國家安全的同時,美國仍然希望能持續鞏固其經濟及技術領先地位,以及避免全球高科技及市場遭到稀釋。美國總統因此於今(2008)年初,提出一系列有關軍商二用出口管制之行政新措施,欲藉此強化軍商二用出口管制制度(dual-use export control system)。其主要目標如下:
(1)適當管制外國終端用戶(Foreign End-Users):美國政策作法是,未來軍商二用出口管制制度將要著重在美國高科技產品外國終端用戶之管理,除了保持其拒絕將敏感性科技輸給武器擴散份子、國際恐怖分子和習慣進行違背美國國家安全及外交政策與利益之國家對象之宗旨外,美國一方面將擴大受管制實體清單(Entity List)對象範圍,嚴格審查曾從事違背美國國家安全和外交政策及利益活動之外國夥伴;另方面,美國則將妥善使用所謂正當使用者計畫(Validated End User(VEU) program),免除這些受信賴之使用對象在輸出產品時受制於嚴格的出口申請程序。例如港商Manufacturing International Corporation(SMIC)最近即被納入VEU初始清單。
(2)增進國家競爭能力:美國將以維持經濟競爭力和創新研發為目標,建立一道檢討受管制軍商二用標的之常規程序,藉此重新評估並適時修正商業控制清單(Commerce Control List)所列產品及對象。
(3)透明化:為求達到資訊公開、共同促進國家安全及競爭之目的,美國商業部還會在網站上公開受到高度審查之外國夥伴清單。
最後,美國行政主管機關亦表示,為了有利於行政機關有效執行國家軍商二用出口管制政策,高度支持透過出口管理法(Export Administration Act)修正之再授權,更新違法之刑罰規定,並提升行政機關之執行權限。
本文為「經濟部產業技術司科技專案成果」
中國大陸於2017年8月在杭州設立網路法院(Internet court),專責處理網路購物、線上著作侵權等涉及網路爭議之案件。該法院網站設有「線上訴訟平台」,當事人在該平台使用手機號碼註冊帳號後,可遞交起訴狀和相應的證據材料,勾選所需依據的法律條文,系統將自動讀取該當事人之相關身分資訊、線上交易過程及各類表單資料。 近日該網路法院針對一線上著作權侵權案件,於審判過程中採用區塊鏈電子數據作為證據,等同認可區塊鏈電子存證之法律效力。由於區塊鏈作為去中心化的數據庫,每筆網路交易訊息皆同步於整個區塊鏈網路,因此區塊鏈有著難以竄改、刪除的特性。杭州網路法院將從第三方存證平台的資格、侵權網頁取證技術可信度及區塊鏈電子數據保存完整性進行審查,對本案電子數據之證據效力作出認定。 杭州網路法院認為,對於採用區塊鏈等技術進行存證之電子數據,應秉承開放、中立的態度進行個案分析認定,不得因為區塊鏈等技術本身屬於新型且複雜之技術而排斥或提高其認定標準。本案認可區塊鏈技術存證之法律效力,將對區塊鏈未來應用發展有很大的影響,隨著技術發展逐步成熟,產業應用的實際效果也愈發顯著。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
印度電力部公布「綠色氫能政策」,擬透過政策誘因建立綠氫產業鏈印度電力部(Ministry of Power)於2022年2月17日公布「綠色氫能政策」(Green Hydrogen Policy),宣告未來擬透過稅制、費用等誘因,建立綠色氫能產業鏈,以達到印度於COP26高峰會所承諾之減碳目標。 有鑑於綠色氫能是直接由再生能源電力所產生,故其相較於灰色氫能(註:由石化過程所產生之氫能)及藍色氫能(註:經碳封存之灰氫)而言,擁有更低之碳排放,有助於印度於COP26高峰會所承諾之減碳目標。然於技術或經濟層面而言,綠氫成本因為其產生、運輸、儲存過程要求相當高之費用以及成本,故遲遲無法普及,印度電力部為增進業者建立氫能產業鏈之經濟誘因,於2月17日公布前揭政策,以為因應。 印度電力部前揭政策,擬針對用地、電力市場等法規進行調適,相關法規調適重點如下: 定義綠色氫能為「直供」或「轉供」再生能源電力電解所得之氫能,也包含生物質能所生產之氫能。 於2025年6月30日前營運之綠色氫能生產業者,可免除25年之州際電力傳輸費用。 前揭綠色氫能生產業者,其所使用之電力可以是就地自再生能源發電設備取得(co-located),也可以是透過電力傳輸自其他再生能源發電設備所取得,不論該綠色氫能業者是否實際營運再生能源發電設備。 綠色氫能生產設備可被視為再生能源發電設備,被設置在相關用地上,並且,將開放綠色氫能設備設置於商港區域,以利綠氫出口。 因生產氫能所消耗或購買之再生能源電力,可計入RPS或RPO(Renewable Purchase Obligation)義務容量當中。 各州輸配電業,應允許綠色氫能生產業者加入電力交易市場。 承上,綠色氫能生產業者可進入餘電交易(banking)市場,並且餘電交易手續費應不超過「前一年度再生能源FIT價格」以及「當月日前交易市場之平均交易價格」間之差額。以避免氫能業者因經濟理由而被排除於餘電市場外。 但不論如何,對於印度而言,綠色氫能還只是發展初期階段,目前綠色氫能價格為每公斤3至6.5美元,而印度政府目標是於2030年將其降至1美元。對於大量仰賴能源進口之印度而言(85%石油及53%天然氣為進口),綠色氫能對於該國之能源自主有著相當重要的角色,因此印度政府將不餘遺力發展氫能。