三月上旬甫於美國新奧爾良舉行的毒物學學會研討會,多數的論文將重點放在肺部暴露於奈米微粒的影響。例如來自美國太空總署休士頓太空中心的John T. James與其同僚,將奈米微粒噴入老鼠的呼吸道,於一週與三個月後再進行檢驗,結果發現儘管類似煤煙的碳奈米球狀物不會造成傷害,可是相當質量的商品化碳奈米管卻會顯著的損及肺部組織,甚至殺死幾隻老鼠。研究人員發現巨噬細胞(macrophages)會困住奈米管,不過隨之死亡。James認為研究小組所使用的劑量並不是非常不切實際,他估計在目前的美國聯邦碳吸入量法規限制下,相對於人體重量,工作人員在17天之內會吸入相等的劑量。
美國西維吉尼亞州國家職業安全與健康協會的Petia Simeonova與其同事,也觀察到接受類似劑量碳奈米管的老鼠會產生富含微粒的肺肉芽腫(granulomas),研究人員也對心臟與主動脈的粒線體DNA進行損害檢查,粒線體傷害為發生動脈硬化(atherosclerosis)的先兆。
日本鳥取大學 (Tottori University )Akinori Shimada報告了首例奈米微粒從肺部移動到血液的系列圖像,碳奈米管一接觸到老鼠肺部極細小的氣管,即湧入穿過表面細胞的微小間隙,並且鑽入毛細血管,Shimada推測此會造成凝集甚至血栓。
羅徹斯特大學Alison Elder報告兔子吸入碳奈米球之後,增大了血液凝塊的敏感性。為了模擬糟糕的都市空氣污染,研究人員給予兔子每立方米包含70微克奈米球體微粒的空氣超過三小時,再觀察發生血液凝塊的時間,結果呼吸奈米微粒的兔子,一天之內即發生血液凝塊現象。因為發生的很快,所以Alison Elder認為奈米微粒是從肺部移動進入血流,而非從肺部送出凝血劑(clotting agents )。
本文為「經濟部產業技術司科技專案成果」
2019年8月7日,美國總務署(General Services Administration, GSA)、國防部(Department of Defense, DoD)及航空暨太空總署(National Aeronautics and Space Administration, NASA)共同發布一項暫行規定(interim rule),依據2019美國《國防授權法》(National Defense Authorization Act, NDAA)修正美國《聯邦採購規則》(Federal Acquisition Regulation, FAR),以公共及國家安全為由,禁止美國聯邦機構購買或使用包括華為、中興通訊、海康威視、海能達及大華科技等5家中國大陸企業、子公司與關係企業所提供之電信或視頻監控設備及服務。禁令並擴及經美國國防部長與國家情報局局長或聯邦調查局局長協商後,合理認為屬特定國家地區所擁有或控制之實體,或與該國家地區的政府有聯繫者。該暫行規定已於2019年8月13日生效,美國政府有權為不存在安全威脅的承包商提供豁免直至2021年8月13日。並預計在2020年8月,全面禁止美國聯邦機構與使用該中國大陸企業設備與服務之公司簽訂契約。 2019美國《國防授權法》第889(a)(1)(A)條,明文禁止美國聯邦機構採購或使用特定企業所涵蓋之電信設備或服務,並禁止將該類產品作為設備、系統、服務或關鍵技術的實質或必要組成。本次修正美國《聯邦採購規則》,即配合新增第4.21小節「禁止特定電信和視頻監控服務或設備的承包」,並於52.204-25中明訂「禁止簽訂與特定電信和視頻監視服務或設備契約」。故除非有例外或豁免,禁止承包商提供任何涵蓋特定中國大陸企業之電信設備或服務,作為設備、系統、服務或關鍵技術的實質或必要組成部分。承包商及分包商必須在契約履行過程中,報告有無發現任何使用此類設備、系統或服務之情形。
吸引優秀外籍人才,澳洲祭出租稅優惠全球化競爭之趨勢下,各國紛紛寄出各式誘因以搶奪優秀人才,澳洲政府在今( 2006 )年 2 月中向國會提出所得稅法修正案( Tax Laws Amendment (2006 Measures No. 1) Bill 2006 ), 期能將優秀高級技術人才延攬至澳洲,使澳洲成為國際企業之營運重鎮( as a business location )。 目前根據澳洲稅法規定,因工作而在澳洲暫時居留者,從課稅角度均被視為澳洲居住者( treated as Australian residents for tax purposes ),由於澳洲對居住者採取全球課稅( taxed on worldwide income )之原則,故除來源於澳洲之所得外,在澳洲工作之外籍人才申報澳洲所得稅時,也需將其在澳洲以外之所得一併申報。雖然目前這些外籍工作者的境外投資所得或可主張租稅減免( foreign tax credits ), 但仍須進行年度所得申報,並可能被重複課稅。 新修正規定 引進暫時性居住者( temporary residents )之概念,所謂暫時性居住者係指暫時性簽證之持有者,此一簽證乃根據 1958 年移民法( Migration Act 1958 )核發。凡持有暫時性簽證者,其澳洲來源所得仍依法課稅,但其國外來源所得則免徵所得稅。另 暫時性居住者之資本利得( capital gains )依非居住者身份( non-residents )課稅;其對外國債務人提供之貸款利息所得,得免予扣繳( relief from interest withholding tax obligations ),由於企業乃扣繳之義務人,此等規定可降低企業在管理外籍員工所需付出之法規成本。 新規定無適用年限之限制,亦未規定欲適用新規定者,是否在修正通過前即應具有暫時性居住者之身分, 一般認為,修正之新規定將因租稅部分之誘因,有助於澳洲延攬優秀之外派人才。
日本經產省發布《促進資安攻擊受害資訊共享檢討會最終報告書》,以加速資安情資共享日本經濟產業省(下稱經產省)於2023年11月22日發布《促進資安攻擊受害資訊共享檢討會最終報告書》(サイバー攻撃による被害に関する情報共有の促進に向けた検討会の最終報告書),主張共享資安攻擊受害資訊,掌握資安攻擊全貌,防止損害範圍擴大。經產省提出具體建議如下: 1.促進各專門組織間之資訊共享:藉由專門組織間的資訊共享,及早採取適當因應措施,避免損害持續擴大,並降低受害成本。所謂專門組織包含資安廠商、資安監控中心(Security Operation Center, SOC)營運商、防毒廠商,與依法令成立從事資安事件諮詢與分析之非營利組織,例如:一般社團法人日本電腦網路危機處理暨協調中心(一般社団法人JPCERTコーディネーションセンター),以及一般財團法人日本網路犯罪對策中心(一般財団法人日本サイバー犯罪対策センター)等。 2.共享無從識別受害組織之資訊:為加快資訊共享,經產省建議將資料去識別化至無從識別受害組織之程度,即可不經受害組織同意而共享資訊。 3.提出《攻擊技術資訊處理與活用指引草案》(攻撃技術情報の取扱い・活用手引き(案)):為提升專門組織共享資訊成效,經產省於指引中彙整受害組織資料去識別化作法,以及各專門組織間共享攻擊技術資訊之具體策略。 4.於保密協議中加入免責條款:經產省建議於受害組織與專門組織簽訂之保密協議中,加入專門組織免責條款,使專門組織具有利用或揭露攻擊技術資訊裁量權,對於利用或揭露資訊,致生受害組織被識別等損害時,非因故意或重大過失不須負擔法律責任,以利推動資訊共享。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。