全方位提升生技製藥能力,德國提出生技製藥領域的價值創造補助新政策

  在製藥領域運用生物技術的方法來研發新藥與新醫療診斷方法,已有越來越重要的趨勢,且將成為未來醫療照顧的主流,因此各國政府均積極透過各種政策工具,企圖搶食此塊經濟利益的大餅,不過直到目前為止,推動生技製藥最為成功的國家,仍集中在少數幾個研發大國。一直以來,德國在製藥領域也是居有舉足輕重的科技領先地位,不過在涉及生技製藥這一塊,德國目前的成就有限,已成功上市而來源於德國的生技藥品,並不多見(2005年德國核准通過的140項新有效成分中,僅有6項由德國公司所研發)。另一方面,德國擁有全歐洲最多的生技公司數目,這些生技公司每年從事相當多的研發活動,但其與製藥公司卻甚少主動合作。為加強生技產業與製藥產業的連結與合作,德國聯邦教育與研究部(Bundesministerium für Bildung und Forschung, BMBF)新近提出了新補助政策-「生技製藥之策略性競爭」(Strategiewettbewerb BioPharma),企圖為德國重新贏回世界藥局(Apotheke der Welt)的美名。

 

  這個新的策略規劃所訴求的對象,是由主要來自於學術界的生技公司與傳統的製藥產業界所成立的合作團隊,而以企業型態經營者(Unternehmerisch geführte Konsortien aus Wissenschaft und Wirtschaft )。BMBF希望透過鼓勵建立這樣的合作關係,讓這些合作參與者提出各種有助於以更有效率的方法研發醫藥品的新策略性概念或創意(Ideen für neuartige strategische Konzepte vorzulegen, die die Entwicklung von Medikamenten effizienter machen),以填補生技製藥產業價值創造鏈中的漏洞。所謂的價值創造鏈,指從實驗室的研究、醫院的投入、到醫藥品的製造、甚至是最後端的藥局等各生技製藥研發乃至製造使用所不可缺的各重要環節。

 

  由德國的這項新補助政策可以看出,在生技製藥領域,德國政府的補助方向已不再侷限於傳統的技術能力的提升,反而是如何串連整個產業鏈以發揮價值創造的最大效益,為此一補助新政策的最大特色。由於補助的目的是在實現價值創造,因此補助去進行價值開發與規劃的醫藥技術項目,也沒有特別限定,反而是希望可以涵蓋所有可能的醫藥技術領域,因此包括抗癌藥物與治療神經系統方面疾病的藥物研發、開發新的疫苗或疾病診斷用的生物標記、以及如何建構臨床研究的新基礎架構(der Aufbau neuartiger Infrastrukturen für klinische Studien)等,均屬BMBF徵求創意的範圍。

 

  經BMBF邀集由國際專家組成的評選委員會評選通過的創意,將可在未來五年獲得BMBF的經費持續協助。BMBF預計選出五個產學合作聯盟,投入總計一億歐元的經費支持,預計在今(2008)年秋天,將可順利選出五個補助的對象。BMBM的此項新補助政策受到生技製藥產業界的廣大迴響,成功引導德國生技產業與製藥產業構思各種可能的合作模式。BMBF表示,其在選擇適格的合作聯盟作為補助對象時,最重要的考量標準為合作夥伴的個別經歷介紹、其有無執行能力、是否具備執行所需的基礎環境條件、所提出的合作概念是否足以使其具備國際競爭優勢,以及所規劃的醫療技術發展是否具有創新性、原創性與市場潛力。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 全方位提升生技製藥能力,德國提出生技製藥領域的價值創造補助新政策, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2732&no=55&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
美國國防部發布《國防部資訊技術發展戰略》,以促進IT變革並為未來奠定基礎

美國國防部(Department of Defense, DoD)於2024年6月25日發布「關鍵點:國防部資訊技術發展戰略」(Fulcrum:DoD Information Technology (IT) Advancement Strategy),將持續促進DoD之IT變革,並為未來奠定基礎。 本戰略描述作戰人員在推動IT方面應達成之目標與重要性,並列出提供聯合作戰IT能力、資訊網路與運算現代化、最佳化IT治理、栽培第一數位人力等四大目標(Line of Effort, LOE),簡述如下: (1)提供聯合作戰IT能力(Provide Joint Warfighting IT Capabilities):在現今不斷變化且充滿競爭的全球環境中,該目標以使用者為中心,提供具功能性、可擴增、永續且安全之IT功能。並以改善作戰人員可用資訊為重點,以利在快節奏、多領域(multi-domain)作戰中獲得決策與競爭優勢。 (2)資訊網路與運算現代化(Modernize Information Networks and Compute):該目標著重於迅速滿足任務與商務需求,利用卓越技術與以資料為中心的零信任(Zero Trust)資通安全方法,提供安全且具更快資料傳輸速度、更低延遲與高度彈性的現代化網路。 (3)最佳化IT治理(Optimize IT Governance):該目標將提高傳送效率、節省成本,且透過從治理到資料獲取系統的簡化政策,以轉變治理制定更好的決策,包括使用強大資料功能。 (4)栽培頂尖的數位人才(Cultivate a Premier Digital Workforce):該目標將確保作戰人員為新興技術之布署做好準備,並持續致力於識別、招募、發展並留住最佳數位人才。其擴展DoD網路人力框架(DoD Cyber Workforce Framework, DCWF),著重於更廣義的數位人力,包括資料、人工智慧、軟體工程的工作角色。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

英國政府擬限制18歲以下孩童於社群軟體按讚功能

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於今(2019)年4月15日發布「合適年齡設計:網路服務行為準則」(Age appropriate design: a code of practice for online services)諮詢報告,針對18歲以下孩童使用網路服務所涉及個人資料之相關議題提出遵循標準,要求網路服務提供商應受遵循以保障孩童隱私資訊。   本次諮詢報告主要針對網路服務如何適當確保孩童個人資料,同時符合歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)以及《隱私及電子通訊規則》(Privacy and Electronic Communications Regulations, PECR),若網路服務提供商未依循該行為準則,將很難證明符合GDPR、PECR規定,ICO亦採取監管措施(regulatory action),包含警告、譴責、執行通知、罰款等。於諮詢報告中,臚列涉及個人資料事項,包括資料共享、地理定位(geolocation)、家長監控(parental controls)、輕推技術(nudge techniques)、默認裝置(default settings)、側寫(profiling)等多達16項遵循標準,其中輕推技術引發抑制網路科技發展、過度監管爭議。   所謂「輕推技術」是指專為引導用戶或鼓勵用戶決策時可以點選之程式以表示用戶想法,簡而言之Facebook、Instagram按「讚」功能、社群軟體Snapchat「Streaks」互動功能,或是新聞網頁常見「是」或「不是」選擇性問題視窗等即是輕推技術應用。由於輕推技術之設計會蒐集用戶瀏覽網頁習慣,甚至透露其個人性格、生活狀態給廣告商或社群媒體等。   諮詢報告指出,依據GDPR前言第38點規定,因孩童對於其個人資料處理之可能風險、結果及相關保護措施及其權利認知較低,同時依GDPR第5條規定個人資料之蒐集處理與利用,對資料主體者應為合法、公正及透明(lawfulness, fairness and transparency)。但輕推技術的運用將會促使資料主體者更容易地提供其個人資料,同時,尤其會誘導兒童去選擇隱私保護較低的選項設定或花費更多時間在這些服務上,而此一技術之運用正是利用資料主體者之心理偏差(psychological bias),而違反了公平與透明原則。因此諮詢報告書要求網路服務提供商應主動限制孩童使用輕推功能。ICO於諮詢文件更詳細依0-5歲、6-9歲、10-12歲、13-15歲、16-17歲不同年齡層限制輕推技術應用之程度,或在何種情況須有家長陪同,以保障孩童隱私。   此項標準引來正反兩派意見,主張自由市場(free market)人士批評,認為有過度監管之嫌並阻礙科技發展,輕推技術本身不是問題,而是在於蒐集個人資料後要做那些運用,同時要如何執行限制技術之應用亦將是問題所在。而贊成者認為廠商如提供網路服務給所有年齡層時,應有特別措施以保護不同年齡層之人,因此對於孩童與成人間之監管程度應有區別。該諮詢報告於今(2019)年5月31日截止公眾諮詢階段,並預計2020年初施行該行為準則。

世界智慧財產權組織發表2020年全球創新指數報告

  世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年9月2日發表「2020年全球創新指數報告」(Global Innovation Index 2020, GII 2020),報告中比較131個經濟體之最新全球創新趨勢。GII為一年一度發行之報告,除了比較不同經濟體的創新指數外,每年會挑選不同創新議題進行深度研究,2020年研究主題為「誰投資創新?」(WHO WILL FINANCE INNOVATION?)。   GII的報告評比,區分為七大指標分別為:組織機構(Institutions)、研發與人力資源(Human capital and research)、基礎建設(Infrastructure)、市場成熟度(Market Sophistication)、企業成熟度(Business sophistication)、知識技術產出(Knowledge and technology outputs)以及創意產出(Creative outputs)。其下再區分為21個次標和80個小標例如政府效能(Government effectiveness)、法規範環境建構(Regulatory environment)、教育支出占GDP比例、外國學生比例、R&D支出占GDP比例、生態永續度、高科技出口、資通訊服務出口等。2020年評比全球創新指數最高的10個國家排名分別為:瑞士、瑞典、美國、英國、荷蘭、丹麥、芬蘭、新加坡、德國和南韓,均為高所得國家;這也是南韓第一次躋身進入前10名。   另外報告中亦說明,2020年COVID-19大流行引發前所未有的經濟停滯。在COVID-19爆發之前,研發支出成長明顯快於全球GDP成長,創業投資(Venture capital)和IP應用達到高峰,但疫情發生的現階段全球經濟成長大幅度下降。然而經濟成長停滯之下,突破性技術創新的潛力仍在繼續存在,例如許多仍保有現金流的大型ICT企業仍持續推動數位創新,製藥技術與生物科技產業的研發支出大量增加,健康產業研發也受到重點關注。此外,COVID-19危機亦會促進傳統產業(例如旅遊、教育和零售等)之創新,以及改變企業在本地或全球之生產工作組織方式。而在各國政府為忙於制定緊急救濟計畫(emergency relief packages),以緩解地域封鎖所造成的負面影響和經濟衰退的同時,這些緊急救濟計畫對新創公司之融資多半不夠明確,到目前為止,各國政府並沒有創新研發作為當前刺激經濟計畫中的優先事項(priority)。   報告中針對「誰投資創新?」之主題,統計數據顯示創新金融(Innovation finance)雖然受疫情影響有所下降,但金融體系尚屬健全。惟資助新創企業的資金正在枯竭(drying up),北美、亞洲和歐洲地區的創業投資交易也急劇下降,幾乎看不到首次公開發行(IPO)。即使是倖存下來的新創公司,其盈利能力和對創投者(Venture Capitalist)的吸引力也在下降。也因為疫情影響,創投者減少對創新、小型和多元化的新創事業提供資金,取而代之關注所謂的「大型交易」(mega-deals),也就是資助大型企業的發展,並將投資領域轉向健康、線上教育(online education)、大數據、電子商務和機器人科技。此外,報告中亦說明近期創投多半集中在可以短期得到報酬的創新事業,例如資通訊軟體及服務、消費性產品服務、金融商品等,取得創投機構大量資金。相較之下,若研發較為複雜的前瞻科學技術,反而取得之資金較少;同時COVID-19惡化此現象,使研發期較長之產業和企業面臨更嚴峻的財務限制。

TOP