2022年4月美國加州法院於Broadcom控訴Netflix專利侵權一案中,就Broadcom的第US 8365183號美國專利(下稱183專利)做出無效的判決。
於2020年3月,Broadcom就Netflix對消費者提供的影音服務提起訴訟,認為Netflix影音內容傳輸方式使用到Broadcom的多件專利技術,此次的183專利,主要是用來在多個電腦/伺服器設備中進行處理工作的分配,依Broadcom的主張,該技術應用於影音機上盒這類產品時,可有效的提升影音媒體的效率。這類專利與演算法有關,對於專利本質是否為抽象概念,需要通過美國最高法院就Alice案對於抽象概念的兩階段測試法,先檢驗請求項是否指向抽象概念,再檢驗請求項是否因其中元件(包含電腦/軟體)的配置,改變其性質而成為適格的專利標的。
加州法院法官James Donato認為,就183專利所主張之請求項內容,主要是在於多個伺服器間進行工作分配,此種行為與辦公室裡進行工作分配並沒有不同,且日常生活中也充滿類似情況,如服務生依照顧客需求進行位置安排,就此Broadcom雖提出該專利方法可提高伺服器效率的論點,但法官認為該專利只是列出傳統電腦技術中會執行的步驟順序,未因該專利所揭露的方法促進電腦的功能,而不足以使抽象概念的性質轉化,因此就該專利做出無效的判決。
「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
繼美國紐約南區地方法院於2007年6月判定暢銷藥物Plavix所基於的專利為有效後,美國聯邦上訴法院於2008年12月再次認定Plavix之專利為有效。此判決有助於阻止Plavix學名藥進入美國市場直至該專利於2011年到期。 Plavix為一降低血液黏稠度之藥物,乃Bristol-Myers Squibb Co. 公司最銷售之產品及Sanofi-Aventis公司第二銷售之產品。加拿大Apotex公司宣稱Plavix之專利為無效,於2006年開始在美國販售Plavix 之學名藥。Bristol-Myers Squibb 與Sanofi-Aventis於贏得訴訟後表示將要求Apotex Inc.支付於販售學名藥期間對兩家藥商所造成的損失。 澳美國聯邦上訴法院法官表示地方法院已徹底的討論Apotex 所提出的專利無效論點,否決Apotex所提出的該專利並未包含新發明及Sanofi-Aventis之科學家使用已知研究方法及已知化合物製成Plavix 之主要組成物。上訴法院法官表示於判斷非顯而易見上,使用「後見之明」(hindsight)是不適合的。 針對此判決,Apotex公司表示他們認為上訴法院之決定為錯誤的並將持續努力尋求於美國銷售有品質的且一般大眾負擔得起的Plavix 學名藥。
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。