93年國人申請發明專利數量大幅成長28.39﹪ 創新研發成果明顯躍進

 

 

  93年專利申請統計資料顯示我國受理專利申請案總數、發明申請案數量、及國人發明申請案等指標,均呈現相當幅度成長,顯示我國過去幾年官方與民間投資創新研發成果有明顯成長。


   93年專利、商標申請與核准統計出爐,全年專利新申請案件總數72,105件,較92年的65,742 件增加6,363件(9.68﹪),本國人申請案43,038件,外國人29,067件。其中屬技術強度較高的發明申請案件總數計41,930件,較前一年增加6,107件(17.05﹪);本國人發明申請案16,754件,較前一年大幅增加3,705件(28.39﹪),顯示我國產業研發技術成果有向上提昇的趨勢。93年專利發證數66,415件,比92年大幅增加24,333件(57.82﹪),此係因93年7月專利法修正實施,新型專利改採形式審查,縮短專利審查時程,及專利廢除異議制度改採繳費後公告同時發證的制度轉換短期影響。


   93年商標申請案依類別統計為72,650件,比92年申請案件數65,907件,增加6,743件(10.23﹪),;93年商標公告註冊案計54,912件,較前一年74,572件減少19,660件(-26.36﹪);依類別計55,986件,均較前一年減少。不論是在申請或公告註冊數都是以本國人佔絕大多數。商標申請於92年底開始實施一申請案多類別制度,不同類別毋需另提出一獨立申請案,因此依類別統計數會比申請案件數多。

 

本文為「經濟部產業技術司科技專案成果」

※ 93年國人申請發明專利數量大幅成長28.39﹪ 創新研發成果明顯躍進, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=277&no=57&tp=1 (最後瀏覽日:2025/11/25)
引註此篇文章
你可能還會想看
日本著作權法修正促進人工智慧開發

  2018年5月18日,於第196次參議院會議中通過「著作權法」修正案,並於5月25日公布,預計於2019年1月1日施行。本次修正是為因應數位網路技術的發展,對需要著作權人同意的行為範圍進行檢視。其中第47條之7修正、及新增之第30條之4與第47條之5與人工智慧發展有重大相關。   日本著作權法於2009年的修正中,增加第47條之7規定,原本可能構成著作權侵害之資料分析、機器學習行為(未經原作者同意複製、改作),只要在必要限度內,不分是否有營利,皆無須權利人同意。然而本條在使用上因為未涵蓋成果物的讓與行為,也就是如果公開販售學習完成的資料集或是人工智慧模型,甚至於同一平台共享資料集都可以構成侵害。有鑑於此,才在本次修法中修正相關條文。   本次修正中,增加第30條之4規範於必要限度內可利用他人著作物的行為,其中在同條第二款中認可第47條之5第1項第2款之行為,也就是「利用電子計算機的情報解析及提供其結果」,亦可被認為不違反著作權法,因而補上原本第47條之7的漏洞。   惟須注意的是,所謂的必要限度還是有嚴格的比例限制,不能無限制使用。由於目前本次修正還尚未生效,未來對人工智慧發展的應用會產生什麼樣的實際影響,值得繼續觀察。

澳洲詮釋自動駕駛「恰當駕駛」內涵

  澳洲國家交通委員會(National Transport Commission, NTC)2017年11月提出「國家自駕車實施指南(National enforcement guidelines for automated vehicles)」,協助執法單位適用目前道路駕駛法規於自駕車案例上。由於澳洲道路法規(Australian Road Rules)第297條第1項規範「駕駛者不得駕駛車輛除非其有做出恰當控制(A driver must not drive a vehicle unless the driver has proper control)」,此法規中的「恰當控制」先前被執法機關詮釋為駕駛者應坐在駕駛座上並至少有一隻手置於方向盤上。因此本指南進一步針對目前現行法規適用部分自動駕駛系統時,執法機關應如何詮釋「恰當駕駛」內涵,並確認人類駕駛於部分自動駕駛系統運作時仍應為遵循道路駕駛法規負責。   本指南僅提供「恰當控制」之案例至SAE J2016第一級、第二級和第三級之程度,而第四級與第五級之高程度自動駕駛應不會於2020年前進入市場並合法上路,因此尚未納入本指南之詮釋範圍之中。本指南依照採取駕駛行動之對象、道路駕駛法規負責對象(誰有控制權)、是否應將一隻手放置於方向盤、是否應隨時保持警覺以採取駕駛行動、是否可於行駛中觀看其他裝置等來區分各級自動駕駛系統運作時,人類駕駛應有之恰當駕駛行為。

歐美擴大永續報告書的揭露範圍,企業可透過歷程管理增進資料透明度

根據美國瑞生國際律師事務所(Latham & Watkins)於2024年1月發布的ESG年度報告指出,隨漂綠議題延燒,ESG報告不受信任為一課題,因此國際逐步擴大ESG監管,多國透過立法強制企業應揭露永續報告書或供應鏈資訊,比如:歐盟於2023年1月生效之《企業永續報告指令》(Corporate Sustainability Reporting Directive, CSRD),要求企業揭露的永續資訊需增加供應鏈資訊的透明度;美國證券交易委員會(SEC)於2024年3月6日通過規則,要求上市公司及公開發行公司揭露碳排放報告等氣候風險相關資訊。 為因應ESG帶來的挑戰,報告建議企業應採取流程化管理方式,了解產品進出口涉及的其他國家對ESG揭露資訊的要求,加以規劃並建置資料控管規範、進行人員教育訓練以及確認ESG相關資料的所有權歸屬。 由於碳排放量的計算沒有一致標準,且難以確保供應鏈上下游所提供的碳排資訊真實、未經竄改等問題,外界不容易信任企業永續發展書提倡的供應鏈減碳策略。國內企業可參考資策會科法所創意智財中心發布的《重要數位資料治理暨管理制度規範(EDGS)》,透過流程化管理,從制度規劃及留存供應鏈二氧化碳排放量或二氧化碳減量等產品相關資料歷程來增進ESG資料透明度。 本文同步刊登於TIPS網(https://www.tips.org.tw)

日本公布「如何計算森林吸收的二氧化碳量」

  因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式: 森林一年吸收二氧化碳量的簡單計算方法   每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 林地復育增加森林吸收二氧化碳量的計算方法   因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 因種植森林土壤所維持之二氧化碳含量計算方法   因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數   此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。

TOP