根據歐盟GMO食品上市規則,唯有通過歐盟EFSA的安全評估並經歐盟審查通過發給上市許可的GMO,始得於歐盟境內流通上市。
過去兩年,歐盟陸續發現其自中國進口的米類產品,被未經許可的基改稻米Bt 63污染,對歐盟的食品安全產生重大疑慮,因而引起歐盟官方及消費大眾的高度關注。為此,中國主管當局雖已請求歐盟提供有關此非法GMO之基因構成(genetic constructs)的詳細資訊,並針對歐盟會員國通報至Rapid Alert System for Food and Feed(RASFF)的案件,開始進行調查並暫時禁止相關業者出口米製品,不過中國迄今未能依歐盟要求,提供其在實施出口管理時的控制樣品,以及其所使用的檢測方法與歐盟所要求者,具有相同品質之證明。
因此,歐盟已在今(2008)年2月通過一項緊急措施的決定,要求自4月15日起,進口至歐盟的中國米類產品應檢附非基改證明(GMO-free certification),且此非基改證明應由歐盟官方所設立或認可之實驗室,使用特定的GMO檢測技術檢測後,檢測結果發現未含有GMO成分時,始能核發非基改證明。
雖然歐盟並非我國農產品的主要外銷國家,但歐盟此項緊急措施仍值得我國注意,蓋我國當前GMO的進出口管理法制與先進各國尚有所落差,而我國最主要的農產品出口國—日本,其GMO管理法律中亦有授權主管機關對進口產品實施生物檢查(即是否含有GMO的檢測)的規定,倘若我國在發展GMO時,未能妥善落實GMO的管理,不無可能對非基改產品造成重大衝擊,當前歐盟要求中國出口的米類產品應檢附非基改證明,即是一例。
本文為「經濟部產業技術司科技專案成果」
美國司法部於2025年6月9日公布,一名中國非法移民(Sheng Hua Wen,下稱被告)就其違反聯邦刑事法律,非法將槍械、彈藥及其他軍事物資出口至北韓之行為,以及擔任外國政府非法代理人等罪名認罪。 被告犯罪行為係在北韓政府官員指示下進行,後者並匯款200萬美元給被告作為採購費用。被告於2023年期間,透過提交虛假報告,陸續將槍械彈藥等軍用品藏匿於自美國加州長堤港(Port of Long Beach)出口的貨櫃內,並透過中國中轉至北韓;被告亦被發現取得約6萬發9毫米子彈以及含敏感技術之產品,計畫輸出至北韓。本案宣判日期已訂於2025年8月18日,最終量刑將由聯邦地方法院法官依據《美國聯邦量刑指南》(The U.S. Sentencing Guidelines)及其他法定因素決定。 依據《國際緊急經濟權力法》(International Emergency Economic Powers Act,以下簡稱IEEPA),凡故意從事、故意企圖從事、故意共謀從事,或協助、教唆他人從事違反依IEEPA所頒布之任何許可、命令、法規或禁止事項者,均屬違法,最高可處20年有期徒刑。另依據18 U.S. Code § 951,任何人,除外交或領事官員或隨員外,於美國境內充任外國政府代理人,且未依規定向司法部長事先通報者,即屬違法,最高可處10年有期徒刑。
加拿大聯邦上訴法院判決無實體酒店仍得就酒店服務註冊商標加拿大聯邦上訴法院於Miller Thomson LLP v. Hilton Worldwide Holding LLP案指出,儘管企業在加拿大未設立實體店面,但如在加拿大有提供與該實體店相關聯的服務,仍可就其服務使用該企業之商標。 該案背景為希爾頓集團(Hilton Worldwide Holding)在加拿大未有華爾道夫酒店(Waldorf Astoria)的實體店,卻將WALDORF ASTORIA(下稱系爭商標)於加拿大註冊用於「酒店服務」。對造Miller Thomson欲在加拿大註冊「WALDORF」、「THE WALDORF」、「WALDORF HOTEL」等類此名稱的商標,遭希爾頓集團反對。Miller Thomson為此主張商標註冊官應命希爾頓集團依商標法第45條規定,提出有在加拿大使用系爭商標的證明。希爾頓集團指出,系爭商標有使用於全球預訂、付款服務,且加拿大客戶為忠誠會員亦有獎勵積分等。然而,商標註冊官以先前Motel 6 Inc. v. No. 6 Motel Ltd. [1982] 1 FC 638 (FCTD) (“Motel 6”)判決,與加拿大商標異議委員會(Trademarks Opposition Board,TMOB)Stikeman Elliott LLP v. Millennium & Copthorne International Ltd., 2015 TMOB 231 (“M Hotel”) and Maillis v Mirage Resorts Inc, 2012 TMOB 220等案,認為須由實際位於加拿大的酒店,始能提供酒店服務,遂撤銷系爭商標的註冊。 經希爾頓集團提起訴訟後,聯邦上訴法院認為商標法未有「服務」的定義,因此有無使用商標,認定方式應符合現代的商業慣例。聯邦上訴法院指出,無論企業提供的是主要服務、附帶服務或輔助服務,只要消費者從中獲得實質利益,即代表企業已實現其服務。準此,華爾道夫酒店在加拿大雖僅有預訂、付款服務,屬於附帶或輔助服務,但若消費者有因系爭商標的原因,而願意在加拿大利用華爾道夫酒店提供的附帶或輔助服務,並從中獲得利益,則可認定系爭商標有在加拿大被使用。 該判決的重要性在於確立即便在加拿大無實體存在,商標權人仍可將商標與其服務結合,但聯邦上訴法院提醒,僅在加拿大境外在網站上顯示商標,尚不足證明該商標有使用於所註冊的服務。此外,商標若結合於網路服務使用,則商標人與加拿大消費者間須有足夠程度的互動,因此,商標權人為了持續受商標法的保護,有必要詳細記錄業經註冊商標的使用情況,俾利在發生爭議時,有證據資料得以佐證。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。