Google稱著作權訴訟危害公眾傳播自由

  高達十億美元的著作權訴訟案件大大挑戰YouTube,YouTube之母公司Google的律師向美國曼哈頓地方法院(U.S. District Court in Manhattan)提交文件對Viacom最新提出的訴訟作出以下回應: 『對受著作權保護的資訊無法出現在該網站上的指控,將威脅兩億用戶在網路上交換資訊的權益』。

 

  自從Viacom於2007年提出訴訟以來,這兩家公司之間的交鋒戰況日益激烈。Viacom聲稱,由於用戶能夠不經允許地看到該公司的傳播內容,YouTube反而一貫縱容未經授權的流行電視劇和電影在其網站上放置,並被瀏覽數萬次,並稱Google對此視而不見,已使該公司遭受嚴重損失。

 

  Google在上周五提交給法官的文件中宣稱,『YouTube在幫助著作內容擁有者保護其著作權方面做的已遠遠超過法律應承擔的義務』。同時,Google表示:『為了尋求上傳者和網路服務業者的合法性,Viacom反而威脅了兩億網路用戶合法交換資訊、新聞、娛樂、政治和藝術表達的方式與自由』。

 

  Google稱所屬的YouTube乃忠實執行1998年『千禧年著作權法』(1998 Digital Millennium Copyright Act) 的要求,認為聯邦法會保護YouTube等對著作權擁有者的要求做出適當回應。但Viacom卻認為YouTube開啟了一個不良示範。

相關連結
※ Google稱著作權訴訟危害公眾傳播自由, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2814&no=55&tp=1 (最後瀏覽日:2025/12/17)
引註此篇文章
你可能還會想看
從Google提起的「FITBEING」商標異議案談JPO對於近似與著名商標的判斷

日本特許廳(Japan Patent Office,後稱JPO)於2024年6月駁回Google公司對來自中國大陸的深▲せん▼小▲ちぇ▼科技有限公司(後稱中國大陸公司)有關「FITBEING」文字商標的註冊異議,認為中國大陸公司的「FITBEING」商標與Google公司的「FITBIT」商標在外觀、發音等方面存在顯著差異,因此不會對消費者造成混淆。 中國大陸公司於2023年1月在日本申請註冊「FITBEING」文字商標,指定於第14類的「鐘錶和計時儀器」等商品。Google公司於同年8月對該商標提出異議,主張「FITBEING」商標與其於2018年註冊的「FITBIT」文字商標,在拼寫及發音上相似,並有致相關消費者混淆誤認之可能,違反日本商標法第4條第1項第11款、第15款。此外,Google公司亦表示其「FITBIT」文字商標已為Google穿戴設備的「周知」標識,應具有排他性。 JPO指出,儘管「FITBEING」和「FITBIT」在拼寫上皆以「FITB」開頭,惟二者字尾的「ING」和「IT」無論在文字外觀、字母數量還是音節數量上的差異皆具顯著差異。此外,JPO亦評估「FITBIT」商標是否為「周知」商標。依日本商標法第4條第1項第10款規定,與消費者廣泛認識其為表示他人營業商品或服務之商標相同或近似,使用於同一或類似之商品或服務者,不得註冊商標。本案中,JPO指出Google公司所提供的證據,包括各國市場調查報告和廣告宣傳資料,卻未能提交足夠的日本市場調查資料,以證明「FITBIT」在日本已被相關消費者廣泛認識為Google穿戴式設備的「周知」標識。因此,基於雙方商標近似及周知程度,JPO駁回了Google公司的異議,認定兩商標無導致消費者混淆誤認之虞。 由本案可知,日本JPO對商標近似性的判斷標準與我國大致相同,均會考量商標的外觀、發音及涵義的差異。企業在設計創作商標時,應檢視商標的外觀、讀音以及涵義,避免欲註冊商標與現有商標近似,以避免無法取得註冊商標。此外,若欲主張「周知商標」,企業應確保提交充分的當地市場調查資料證明商標的知名程度,包括當地市場的消費者調查結果及銷售資料等,當面臨爭議時,用以主張商標的著名程度。 本案目前經JPO駁回Google公司的異議後,尚無進一步的訴願或訴訟公開資訊。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)

員工分紅列費用之會計處理 金管會擬自民國97年起適用

  新修正商業會計法第 64 條規定,商業對業主分配之盈餘,不得作為費用或損失。但具負債性質之特別股,其股利應認列為費用。本條但書即是企業對於員工分紅應與以費用化之法源。配合此一新修正規定,金管會前已邀集業界及產業公會、四大會計師事務所與相關政府單位等,針對員工分紅費用化相關問題共同討論以研擬員工分紅費用化之相關會計處理及配套措施。 金管會及有關單位研討後決定, 在會計處理方面,企業應於期中報表依章程所訂之比率,預估員工分紅及董監酬勞金額入帳。期後董事會決議發放金額有重大變動時,該變動應調整當年度(原認列員工紅利之年度)之費用。至於次年度股東會決議若有變動,則依會計估計變動處理,列為次年度損益。 至於員工分紅配發股數之計算基礎以公平價值評價,上市上櫃公司應以股東會開會前一日之公平市價(考慮除權及除息之影響)計算股票紅利股數;興櫃公司及未上市上櫃之公開發行公司則應以股東會前最近期經會計師查核簽證之財務報告淨值計算股票紅利股數。企業發行員工認股權憑證及買回庫藏股轉讓予員工,應以公平價值法認列為費用。 以上決議將自 民國九十七年一月一日 起的財務報表開始適用。   由於員工分紅費用化,對一向以股票分紅作為獎勵員工的科技產業,可能造成不小的衝擊,因此,金管會也提出「員工認股權憑證制度」及「庫藏股票制度」的配套措施,並將修正「發行人募集與發行有價證券處理準則」與「上市上櫃公司買回本公司股份辦法」。金管會表示,有關本案規劃措施及實施日期,將由經濟部彙整各部會意見,提報行政院,相關措施將配合實施日程發布。

歐盟理事會將嚴格執行資料保護基本權

  歐洲理事會修訂「保護個人有關個人資料處理及自由流通規則(一般資料保護規則)」(Proposal for a Regulation of the European Parliament and of the Council on the protection of individuals with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation), GDPR),該草案內容包括行政罰鍰三審制(three-tiered system)。凡故意或過失違反歐洲資料保護基本權之企業,情節重大者,可能招致鉅額行政罰鍰,草案之裁罰性措施將讓從業者更加重視資料保護法益。   是否對違反GDPR之侵權行為裁處罰鍰,會員國政府有裁量權限;已受刑事制裁者,政府亦得免除罰鍰以避免重複處罰。資料保護主管機關(data protection authorities, DPAs)依三審制判斷,確保所裁處罰鍰具有效性、比例性及嚇阻性。三審制包括:第一審,是否對資料當事人之資料要求延遲、變更回應;第二審,是否對資料當事人、DPAs盡資訊透明義務;第三審,各種具體侵權行為,包括對於資料取得缺乏法律依據、未能即時告知資料違反情事,或未採取適當安全防衛措施於歐盟以外區域傳遞資料等。   依草案,DPAs審酌罰鍰額度時,應依下列計算罰鍰:   (1) 企業故意或過失未能於一定期間內,回應資料當事人之資料查閱請求者,裁處上一會計年度全球總年營業額0.5%罰鍰。   (2) 企業故意或過失未能提供任何或所有符合資料當事人要求之必要資訊;或未能對消費者充分揭露個人資料蒐集、處理的目的者,裁處上一會計年度全球總年營業額1%罰鍰。   (3) 企業故意或過失未能維護消費者權益,更正或刪除消費者資料,違反GDPR所保障之消費者「被遺忘權」者,裁處上一會計年度全球總年營業額1%罰鍰。   (4) 企業故意或過失處理個人資料,行為不具適法性、違反法規、沒有對當事人通知資料違反或將個人資料傳遞自歐盟以外區域,該區域沒有適當安全資料保護者,就企業上一會計年度全球總年營業額裁處2%罰鍰。   六月中旬,歐盟各部長將就歐洲議會、歐盟理事會的提案,就罰鍰額度進行最後協商,未來將持續關注草案協商後續發展。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP