特定奈米科技經歷研發階段過後,所獲致的成熟技術產品,要邁向市場商業化階段,能否真正成功,取決於市場消費大眾能否具有信心願意採用。而奈米科技由於新興發展存有未知之不確定風險,所以有論者開始規劃研擬,引進責任保險機制,藉由責任風險分散之功能,期望解決面對不確定風險時,能夠足以妥適因應。
依據國際最具份量之瑞士再保公司(Swiss Re) 對於奈米科技之保險機制,2008年出版「奈米科技:微小物質,未知風險(Nanotechnology--Small Matter, Many Unknowns:The Insurers' Perspective)」研究報告 ,其中明文點出,保險業(Insurance Industry)之核心業務即為移轉風險(Transfer of Risk),由保險公司(Insurer)經過精算程序後收取一定費用,適時移轉相關風險,並產生填補功能。
然而,保險業對於可藉由保險機制所分散之風險,亦有其極限範圍,如果超過以下三原則者,則會被認為超出可承擔風險範圍,屬保險業無力去承擔者,所以保險機制之引進將不具可行性:
(1)風險發生之可能機率與發生嚴重程度,現行實務沒有可行方式能加以評估者。
(2)當危害產生時,所造成之影響為同時擴及太多公司、太多產業領域、或太廣的地理區域者。
(3)有可能產生的巨大危害事件,已超過私領域保險業所能承受之範圍者。
此外,為確保未來得以永續經營,保險公司對於願意承保之可保險性(Insurability)端視對於以下各因素性質之評估:
(1)可加以評估性(Accessibility):對於所產生之損害係屬可評估,並得以加以計量化、允許訂出價格者(be Quantifiable to Allow Pricing)。
(2)無可事先安排者(Randomness):對於保險事故之發生,必須是不可預測者,並且其所發生必須獨立於被保險者本身主觀意志(the Will of the Insured)之外。
(3)風險相互團體性(Mutuality):相關保險者必須基於同時參加並組成共同團體性,藉以達到分擔分散相關風險性。
(4)經濟上可行性(Economic Feasibility):必須使私人保險公司藉由收取適宜保費,便得以支付對等之賠償費用,可以確保業務經營得以永續持續下去。
綜上所述,可以明瞭並非所有風險,保險公司均願意承保而能達到分散風險者,對於風險必須是可預測性並有承保價值,保險公司本身具有商業機制,依據精算原則確定願意承保之費用,此才可謂實務上可行,對於奈米科技引進保險機制之衡量思考,也當是如此。
本文為「經濟部產業技術司科技專案成果」
2023年5、6月經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD)在邁向數位化計畫(Going digital Project)下陸續公布53個國家地區科學技術創新政策(science, technology and innovation policy)指標。OECD另一方面也提供許多政策工具供各政府參考,如2022年12月發布《數位化推進資料治理以促進增長和福祉》(Going Digital to Advance Data Governance for Growth and Well-being),並出版《資料治理政策制定之數位化指南》(Going Digital Guide to Data Governance Policy Making),協助應對轉型為數位治理時的潛在益處與風險。 《數位化推進資料治理以促進增長和福祉》指出,數位工具發展使資料蒐集、處理的效能大幅增加,邊際成本快速下降,為經濟、社會注入新驅動力。OECD觀察到COVID-19疫情危機中,各國政府藉多樣的資料有效追蹤疾病並做出相應對策;然而,也出現資料治理不當案例,如有勞動中介機構不慎在資料應用時加深性別勞動的不平等。因此,資料成為治理的戰略資產同時也需詳加了解資料多樣化的特性,在資料跨領域產製、流通與利用的過程中一併考量其益處與風險。 《資料治理政策制定之數位化指南》則點出三個發現,並提供相應策略做為各國政府治理參考。第一,關切資料開放同步產生的益處與風險,建議應確立風險管理的文化並建置透明且開放的資料生態系,以增加使用者的能動性,俾利人們自覺主動利用資料。其次,治理框架應平衡生態系中利害交疊的人民、企業團體、政府各部門等,藉契約範本、行為準則等機制確保決策各環節中利害關係人的參與機會和框架的一致性。第三,資料的邊際成本雖一再降低,然而進入門檻、後續管理的負擔仍重,政府應持續激勵資料的基礎建設投資,促進市場競爭並解決後進者的阻礙。
美國最高法院對間接侵權及專利說明之定義作出最新判決見解為了減少美國專利訴訟泛濫,及防止專利蟑螂輕易向他人提起專利訴訟,美國最高法院在2014年6月 對兩件專利訴訴訟案進行判決,此決定也對專利權人及專利蟑螂不利。 首先,最高法院針對Limelight Networks v. Akamai Technologies否決聯邦上訴法院的判決。聯邦法院認為Limelight雖然沒有使用Akamai商業方法中每一個過程步驟之專利,但其使用其方法專利之其中方法就算造成間接侵權(induced infringement)。然最高法院認為,聯邦法院的判決對於間接構成侵權有誤解,Limelight所使用的商業方法並沒有引導間接構成侵權。此決定對於現今網路科技盛行之時代有很重要的影響,更防止不實施專利體及專利蟑螂隨意對潛在對象提起專利訴訟。 另一個案件為Nautilus, Inc. v. Biosig Instruments, Inc,最高法院亦駁回聯邦上訴法院之判決,對於專利說明(patent claim)的內容清楚性作出新的說明。聯邦上訴法院在此案中對於專利法第112條中專利說明的要求作出解釋,認為凡是專利說明不會難以解釋且模糊(insolubly ambiguous),專利說明皆可符合專利法規定。但最高法院採不同見解,認為聯邦法院的見解不符合專利法之規定,規定專利說明的內容必須要合理且明確,使可符合專利法的要求。此決定對於專利蟑螂尤其是一大打擊,過往專利蟑螂多以模糊的專利說明來進行專利訴訟,但今後要求明確的專利說明,讓雙方有更清楚的專利說明依據進行專利訴訟。
地理空間資料(Geospatial Data)Google地圖、GPS導航、Facebook定位打卡、「台北等公車」、Uber叫車,「地理空間資料」(Geospatial Data)的運用已經滲透現代人的生活。然而,究竟什麼是「地理空間資料」?所謂「地理空間資料」,依美國的《2018年地理空間資料法》 (Geospatial Data Act of 2018)的定義:「與地球上緊扣相關的位置資訊,包含辨識地球上的地理位置和自然或結構特徵與疆界。在向量資料組(Vector Dataset)中,大致以點、線、多邊形或複雜的地理特徵或現象呈現。該資料可能透過遙測(Remote Sensing)、製圖(Mapping)和量測(Surveying)科技取得。」 地理空間資料涉及地理學、地圖學(Cartography)、地理資訊系統學(Geographical Information Science, GIScience)及許多相關的科學領域。互動式的時間與空間功能,成就了當今混和空間與時間的資訊爆炸,更是五花八門運用地理資訊的手機應用程式之基礎等。應用場景涉及政府、商業、社會各層面,順利達成多元且重要的任務,例如:疾病通報、環境監測和公共安全。2017年Google於委託AlphaBeta的分析報告指出:「全球地理空間資料相關服務每年有四千億美元的產值、節省消費者超過五千五百億美元的燃料和時間成本、直接創造四百萬份工作機會。透過電子地圖服務,如:提高顧客流量的免費行銷工具Google My Business,更促使小型商家產生1.2兆美金的營業額。」
RFID應用與相關法制問題研析-個人資料在商業應用上的界限