美國廠商使用之DMCA侵權調查正確性遭質疑

  一項由華盛頓大學所發表的研究聲明指出,媒體工業團體正使用有瑕疵的方式調查peer-to-peer網路文件共享中侵害著作權的問題。包括M.P.A.A.、E.S.A.、R.I.A.A等團體,不斷寄出逐年增加的DMCA侵權移除通知(takedown notices)給各大學和其他的網路業者。許多大學會在未經查證的情況下直接將侵權移除通知轉寄給學生,R.I.A.A.甚至跟進其中的一些侵權報告並將之寫入財務報告中。

 

  但在2008年6月5日由華盛頓大學的助理教授等三人所發表的研究中認為這一些侵權移除通知應該更審慎檢視之。研究指出,這些團體在指控檔案分享者的調查過程中有嚴重的瑕疵,可能使對方遭受不當的侵權指控,甚至可能來自其他網路使用者的陷害。在2007年5月及8月的兩次實驗中,研究員利用網路監控軟體監控他們的網路流量,實驗結果顯示即使網路監控軟體並未下載任何檔案,卻仍然接收到了超過400次的侵權警告信。

 

  該研究結果顯示執法單位的調查過程中只查詢了網路分享軟體使用者的I.P.位址,卻未真正查明使用者正在下載或是上傳的實際檔案為何,在這種薄弱的搜查技巧跟技術方式之下任何使用網路文件分享軟體的使用者都可能被告,不論其所分享的檔案是否侵權皆如此。

相關連結
※ 美國廠商使用之DMCA侵權調查正確性遭質疑, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2827&no=57&tp=1 (最後瀏覽日:2026/01/03)
引註此篇文章
你可能還會想看
日本政府透過公告呼籲產官合作,提供有助防疫之統計資料

  日本經濟產業省於2020年3月31日會同內閣官房、厚生勞動省(下稱厚勞省)以及總務省等中央主管機關,發布「請求提供有助防止新型冠狀病毒傳染病疫情擴大之統計資料(新型コロナウイルス感染症の感染拡大防止に資する統計データ等の提供の要請)」公告(下稱本公告),請求經營平台及行動通訊等服務的業者,提供有助於形成防疫措施的相關統計資料,如平台或電信服務使用者的移動軌跡或服務使用紀錄。本公告之目的,係使政府取得相關資料,掌握各地區的人員流動、群聚感染徵兆及其風險,對外提供精確資訊,進而早期發現疫情,並即時擬定保持社交距離、防堵群聚感染蔓延等措施,以防止新型冠狀病毒傳染病的疫情擴大。   此處的請求(要請)因無法律明文授權,故對受請求之業者無拘束力。同時,上述向業者請求提供的資料,排除個資法令所定義的個人資料之統計資訊。本公告並指出,經請求取得的資料,亦僅供職司防止新型冠狀病毒傳染病疫情擴大的權責單位,在遏止新型冠狀病毒傳染病疫情之目的範圍內使用。一旦相關任務結束,將會儘速刪除上述資料。未來於必要時,亦可能另行請求業者提供涉及個資的資料,此時則會遵照個人資料保護法、以及同法訂定的例外規定,向各業者提出具適法性之請求。   依據本公告意旨,厚勞省同日即與LINE達成合作協議,其後於4月13日,又與日本YAHOO達成相同協議。同時,LINE亦約定會配合厚勞省釋出的防疫措施與資訊,向LINE使用者主動發送防疫資訊、提醒應定期量測體溫、提供返國人士與接觸者之諮詢窗口等訊息。

歐盟監察官日前指出,ISP業者的流量管理可能違反資料保護及隱私法

  歐盟資料隱私保護監督官(European Data Protection Supervisor, EDPS)Peter Hustinx呼籲歐盟,儘速建立專家小組,制定指導原則,將資料保護以及隱私原則納入網路中立原則中(Network Neutrality)。   網路中立原則原係要求對於網路服務提供者之間不應有所歧視,應平等對待所有資料。但是,在符合歐盟法規下,ISP業者亦得針對網路內容提供者或終端使用者,以不同收費方式管制網路流量。判斷的準據,則以使用者在網路上傳遞的個人訊息為主。調查官Hustinx在其意見書中指出,調查使用者傳遞的訊息可能會背離歐盟資料與隱私保護相關法律。   根據歐盟的隱私及電子通訊指令(Privacy and Electronic Communication Directive),ISP業者在某些條件下,得以促進通訊傳輸為目的,處理個人資料,但是必須取得使用人同意。這項指令亦要求ISP業者必須採取適當的技術、組織措施以確保資料的安全。承此,Hustinx就網路中立性所提出的意見,即為前述指令之例外,亦即ISP業者在確保網路順暢及監督是否有干擾時,其監控行為無須使用者同意。但若為限制某些服務,例如檔案交換,而進行的監控行為,則不在此限。再者,該同意必須免費的、明確的並且使用者得了解的。Hustinx提出的指導原則強調確保網路使用者被適當的告知,進而了解該項個人資料監控的意義而做出同意與否的決定。同時,ISP業者在進行調查時,亦應謹慎為之,不違反比例性原則。

歐盟「Fit for 55」溫室氣體減量政策

  歐盟執委會於2021年7月14日公布一系列有關再生能源、能源效率、交通運輸、財稅政策、碳交易機制等議題之立修法提案。提案目的是希望整體制度能更加有助於歐盟氣候法(European Climate Law)中所設定減碳目標達成,於2030年減少相當於1990年55%的排碳量,故被稱為「Fit for 55」。   執委會為達成減碳目標,具體提案內容如下: (1)能源效率:修正《能源效率指令》(Energy Efficiency Directive),設定2030年能源消耗減少36~39%目標,並要求每年更新公部門建物至少3%,以提升能源效率; (2)再生能源:修正《再生能源指令》(Renewable Energy Directive),目標增加2030年的再生能源使用比例達現在的40%; (3)交通運輸:於陸路運輸,透過修正《小客車與輕型商用車新車二氧化碳排放規則》(Regulation setting CO2 emission standards for cars and vans),針對出廠新車制定2030年汽車55%、廂型商用車50%、2035年所有新車100%之減碳目標,並配合《替代燃料基礎設施規則》(Alternative Fuels Infrastructure Regulation)之修正,明訂高速公路每60公里設置充電站、150公里設置加氫站,以提供低碳運具之需求;於空運,歐盟航空永續燃料倡議(ReFuelEU Aviation Initiative),要求航空能源供應商增加永續燃料比例;針對海運,則透過歐盟海事燃料倡議(FuelEU Maritime Initiative),針對結合永續燃料與零排放科技的結果進行模擬,並設定最高排碳量。 (4)財稅政策:制定《碳邊境調整機制》(Carbon Border Adjustment Mechanism),針對被選定的目標產品(包含:水泥、電力、肥料、鋼鐵、鋁)訂定碳價格,於其自境外輸入時課徵稅費,以解決碳洩露問題;修正《能源稅指令》(Energy Taxation Directive),調整能源相關產品稅收計算方式、刪除不合時宜的規定,透過稅收調整能源使用之誘因,以貼近減碳需求。 (5)碳交易機制:修正《溫室氣體排放交易指令》(EU Emission Trading System Directive)擴大碳交易機制適用對象,納入海運、燃料供應中心,同時要求會員國應將碳交易所得,全數用於氣候能源相關計畫,以補足當前財務上的缺口。   總結而言,歐盟「Fit for 55」政策為使整體制度更符合2030年55%的減碳目標,透過個別部門減碳目標之設定、替代燃料之推動、財政誘因之調整等三種手段,希望多方面對減碳做出貢獻,以加速減碳的進程。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP