一項由華盛頓大學所發表的研究聲明指出,媒體工業團體正使用有瑕疵的方式調查peer-to-peer網路文件共享中侵害著作權的問題。包括M.P.A.A.、E.S.A.、R.I.A.A等團體,不斷寄出逐年增加的DMCA侵權移除通知(takedown notices)給各大學和其他的網路業者。許多大學會在未經查證的情況下直接將侵權移除通知轉寄給學生,R.I.A.A.甚至跟進其中的一些侵權報告並將之寫入財務報告中。
但在2008年6月5日由華盛頓大學的助理教授等三人所發表的研究中認為這一些侵權移除通知應該更審慎檢視之。研究指出,這些團體在指控檔案分享者的調查過程中有嚴重的瑕疵,可能使對方遭受不當的侵權指控,甚至可能來自其他網路使用者的陷害。在2007年5月及8月的兩次實驗中,研究員利用網路監控軟體監控他們的網路流量,實驗結果顯示即使網路監控軟體並未下載任何檔案,卻仍然接收到了超過400次的侵權警告信。
該研究結果顯示執法單位的調查過程中只查詢了網路分享軟體使用者的I.P.位址,卻未真正查明使用者正在下載或是上傳的實際檔案為何,在這種薄弱的搜查技巧跟技術方式之下任何使用網路文件分享軟體的使用者都可能被告,不論其所分享的檔案是否侵權皆如此。
澳洲國家交通委員會(National Transport Commission)與警覺、安全、生產力合作研究中心(Cooperative Research Centre for Alertness, Safety and Productivity ,Alertness CRC)於2016年12月攜手研究重型車輛駕駛員之疲勞駕駛影響,並特別探討科技設備檢測及因應的可行性,並著手研析重型車輛疲勞駕駛管理相關規範之評估規劃。 依據澳洲國家重型車輛法(Heavy Vehicle National Law,HVNL)規定,設有國家重型車輛管理獨立機構(The National Heavy Vehicle Regulator,NHVR)針對總重4.5噸之重型車輛進行規範監管。依國家重型車輛疲勞管理規則【Heavy Vehicle (Fatigue Management) National Regulation】規定針對1.超過12噸總重額(Gross Vehicle Mass,GVM)之重型車輛2. 車輛及聯結物超過12噸者3.超過4.5噸可乘載12名成人(包含司機)之巴士4.超過12噸總重額定值之卡車及聯結車,其附接工具或機械者,必須進行疲勞管制,其他對於有軌電車、工具機械車輛(例如:推土機、拖拉機)、露營車等則不在此管制對象。該法針對重型車輛工作和休息時間、工作及休息時間之紀錄、疲勞管理豁免(Fatigue management exemptions),及公司、負責人、合夥人、經理等的連帶責任,訂有相關規範。疲勞管理規則的規範核心在於駕駛員不能在疲勞的情況下行駛重型車輛,故即使符合工作和休息限制,駕駛員也可能因疲勞而受影響。 目前,因有限的證據表明工作安排對於重型車輛駕駛員疲勞的影響程度,亦很少有研究使用客觀和預測技術測量駕駛員的警覺性和疲勞,另對於駕駛員睡眠的質量和時間最低要求的資訊亦不足。因此,現行法律規範對重型車輛駕駛員疲勞的影響將受到挑戰。故警覺、安全、生產力合作研究中心將採取更精準的警報檢測方法和睡眠監測設備,進行相關研究測試,以作為未來國家重型車輛疲勞管理規則修訂之依據。 駕駛疲勞所引發的交通事故時有耳聞,往往造成重大危害與耗費社會成本。目前實務上已有利用科技設備偵測是否有疲勞駕駛情形,然而更重要的是,應落實行車前的疲勞管制,及相對應的解決方案,並加強公司及相關管理者之監督義務及連帶責任,才能有效降低疲勞駕駛肇事率,確保道路安全。
日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正於2016年1月21日,日本公平交易委員會(Japan Fair Trade Commission,下稱JFTC)公布了修正後的「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」,就有關標準必要專利權利行使有無違反反托拉斯法之相關問題進一步為解釋,俾利往後企業為商業行為時之參考。以下為其修正概要:一、當標準必要專利權人同意依據FRAND原則授權時,其若再提出訴訟要求排除有意願取得授權者(willing licensee)為該標準必要專利權之利用或是拒絕授權與有意願取得授權者時,該行為會被認定違反反托拉斯法。二、基於一般商業行為所為並善意進行商業談判者,會被認定屬有意願取得授權者(willing licensee),不論其之後是否就該專利有效性為爭執,或是對該專利是否屬實質必要專利為爭執。三、阻止他公司運用該專利進行研究、發展或販賣產品會被認定為不正商業行為,不論該行為是否在商品市場上產生限制競爭或獨占之結果。 JFTC為了釐清行使智慧財產權時所可能面臨是否違反反托拉斯法之相關問題,於西元(下同)2007年9月8日發布「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」與「標準化與專利池協定指南(Guidelines on Standardization and Patent Pool Arrangements)」。標準必要專利(SEP)之相關爭議原則需依這些指南為判定,但這些指南對於一些表面上屬於權利行使(例如:標準必要專利之權利人所提起之侵權訴訟)的行為定性所提供的解釋卻十分有限。因此JFTC決定修改專利指南,並且公布草案予各方利害關係人表示意見,此乃JFTC於斟酌所得之各方意見後,所為之修正。
地理空間資料(Geospatial Data)Google地圖、GPS導航、Facebook定位打卡、「台北等公車」、Uber叫車,「地理空間資料」(Geospatial Data)的運用已經滲透現代人的生活。然而,究竟什麼是「地理空間資料」?所謂「地理空間資料」,依美國的《2018年地理空間資料法》 (Geospatial Data Act of 2018)的定義:「與地球上緊扣相關的位置資訊,包含辨識地球上的地理位置和自然或結構特徵與疆界。在向量資料組(Vector Dataset)中,大致以點、線、多邊形或複雜的地理特徵或現象呈現。該資料可能透過遙測(Remote Sensing)、製圖(Mapping)和量測(Surveying)科技取得。」 地理空間資料涉及地理學、地圖學(Cartography)、地理資訊系統學(Geographical Information Science, GIScience)及許多相關的科學領域。互動式的時間與空間功能,成就了當今混和空間與時間的資訊爆炸,更是五花八門運用地理資訊的手機應用程式之基礎等。應用場景涉及政府、商業、社會各層面,順利達成多元且重要的任務,例如:疾病通報、環境監測和公共安全。2017年Google於委託AlphaBeta的分析報告指出:「全球地理空間資料相關服務每年有四千億美元的產值、節省消費者超過五千五百億美元的燃料和時間成本、直接創造四百萬份工作機會。透過電子地圖服務,如:提高顧客流量的免費行銷工具Google My Business,更促使小型商家產生1.2兆美金的營業額。」
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。