英國內閣辦公室於2008年7月7日公佈食品政策報告,內容為檢討衝擊該國食物供應之重大因素,並指出非基因改造動物飼料之取得已有困難,是以食品標準局(Food Standards Agency)預定與環保部門(Department for Environment, Food and Rural Affairs,Defra)合作,重新檢視基因改造產品之標示與銷售法規。
關於基因改造產品或食品添加物之標示,英國係遵循歐盟於2004年4月18日起適用之第1829/2003規則(Regulation (EC) No. 1829/2003),惟僅利用含有基因改造成分飼料所餵養之家禽與家畜,由於該等動物本身的基因並未受到改造,其所產出之肉類、奶類或蛋類,不需依前述規範標示為基因改造產品。一般而言,以供應大眾食用為目的之基因改造產品或添加物,皆負有強制標示之義務,如產品中出現偶發性或無可避免之基因改造成分時,其比例須低於0.9%方不適用該規定。
英國民眾對於基因改良產品的接受度不高,超市亦多嚴格要求畜牧業者使用非基因改造飼料;基於環境因素考量,歐盟對於進口產品如含有未經核准之基因改造成份,亦採取零忍受度的政策,是以目前歐盟僅允准一種基因改造穀物於市面上販售。
然而,隨著物價持續攀高,畜牧業者不堪負荷下選擇節省成本,反而可能導致諸多基因改造產品在標示不清或根本未為標示的情形下進口至英國。為此,英國政府將持續遊說歐盟修改現有相關制度,並加速核准基因改造飼料進入歐洲市場。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
落實綠色供應鏈 台灣廠商尚待加強歐盟推動的有毒物質禁制令( Restriction of Hazardous Substances, RoHS )自今( 2006 )年 7 月後開始啟動,國內多家 IT 廠商如主機板、液晶螢幕等業者均表示產品符合 RoHS 規範,政府提供的資料也指出,台灣大約八成的供應商和製造商符合 RoHS 規範,但是依照綠色環保產品行銷業者的觀察,實際數據遠低於此,應該只有五成不到。 所謂的 RoHS ,係明列自 2006 年 7 月後,製程、設備及材料處理研發禁止使用 6 種有毒物質,如鉛、汞、鎘等,內含六項管制物質的產品將不可在市面流通,屆時輸歐的電子、電機產品皆必須符合該標準。如果一旦抽驗發現有毒物質,產品即可能遭受召回、高額罰款或者長期法律訴訟。 廠商所謂的「符合」還有很多可議的空間,主要原因有兩種:首先製造商在取得供應商提供的原物料時,也許前者的確不含有毒物質,但是在製程、運送過程中,原物料仍有被污染的可能性,例如有鉛和無鉛產品共用一條生產線。然而製造商但憑供應商提供的品質文件就聲稱終端產品符合了 RoHS 規範。 其次,即使是供應商表示原物料符合 RoHS 規範,也還有待商榷,因為這必須判定供應商的原物料送審時,是以混測還是均質檢測。所謂的混測就是把包含兩三種不同原料的產品一併送測,這時候即使單一原料含有有毒物質,但在和其他物質含量平均後就無法檢測出來。均質檢測則就是每個原料都單獨出來檢驗。由於後者的成本高出許多,因此國內供應商多以混測方式送審,使得檢測結果可信度並非絕對。 RoHS 對將大量產品輸出歐洲市場的台灣 IT 產業影響深遠,根據經濟部技術處所提供的資料,據估計將有近 3.5 萬家廠商、高達新台幣 2,446 億元的產值將受到衝擊。基於此原因,經濟部技術處於去( 2005 )年七月啟動「寰淨計畫( G 計畫)」,結合系統廠商、檢測驗證機構、資訊服務業者等單位,以系統廠商帶動下游供應商的方式,加速國內電腦廠商推出符合環保規範的產品。儘管政府推動甚殷,國內供應商的確在前年開始準備,不過要確實符合 RoHS 之規範精神,而非僅是形式上符合,仍有待政府與業者共同努力。
FCC主席Julius Genachowski警告美國恐有頻譜危機美國聯邦通訊傳播委員會(Federal Communications Commission, FCC )主席Julius Genachowski表示,美國政府正努力規劃商業用途頻譜(spectrum)供給量,以滿足通訊科技服務發展需求。惟諸多產業專家預測無線通訊服務運用導致頻寬需求快速增加,無線通訊擁塞情況恐將嚴重惡化。 儘管FCC已藉頻譜拍賣釋出不少頻譜,且2009年6月全美廣電數位化後(DSO),一定要件開放業者毋須取得頻譜執照便可使用所謂的「閒置頻譜」(interleaved/white space),但是頻譜匱乏的問題仍無法解決。 對此,FCC允諾將會弭平頻譜供給需求間的落差,並且列為FCC的首要任務之一。未來FCC將透過非商用頻譜重分配與鼓勵發展更有效率使用頻譜之科技,以期解決頻譜不足的窘境。 產業界與公眾安全通訊相關組織呼籲FCC應提供更多頻譜供無線通訊服務使用。不過FCC亦要求資通訊產業於研發行動寬頻新產品時,須設想頻譜供給不足,研發更有效率使用頻率的通訊技術。產官學三者間,必須相互配合與協調(尤其是業者間的「不歧視原則」),方能有效解決網路通訊擁塞及頻譜匱乏問題。
聯邦巡迴上訴法院確認同為蘋果供應商的玉晶光並未侵害大立光的專利權2013年6月4日大立光在北加州聯邦地方法院起訴玉晶光,主張玉晶光生產的八款透鏡侵害其五件美國專利。就部分的產品玉晶光請求法院裁判無引誘侵權,北加州聯邦地方法院部分准許了玉晶光的請求,之後大立光就無引誘侵權部分上訴聯邦巡迴法院敗訴。 大立光未能主張直接侵權,因為玉晶光絕大部分的透鏡是銷售給蘋果在亞洲的供應鏈中的鏡頭模組廠,鏡頭模組廠再販售給亞洲的系統組裝廠,最後由系統組裝廠整機出售給蘋果,再由蘋果販賣給美國的消費者。這個過程中玉晶光並非唯一的透鏡供應商,大立光也是供應商之一甚至供應量大於玉晶光。 法院贊同並認為引誘侵權是行為人(本案中為蘋果)被引誘而有直接侵權的證據,但大立光在本案中無法證明玉晶光有引誘侵權責任,因玉晶光沒有在美國有直接製造、使用、銷售、許諾銷售或進口的行為,故不構成直接侵權,而玉晶光在本案中並不爭執侵害大立光的專利權,但主張並非是引誘侵權人。 大立光另提出的主張是蘋果的供應鏈是「隨機選擇」大立光或玉晶光的透鏡,因此推論蘋果在美國的產品採用玉晶光的比例,等於蘋果在全世界的產品採用玉晶光的比例,進而認定蘋果在美國有直接侵權。唯聯邦巡迴上訴法院認為大立光關於「隨機選擇」這個主張,沒有提出來自供應鏈的相關證據,所以沒辦法證明蘋果在美國的產品有使用玉晶光的透鏡。大立光可再上訴美國最高法院。 本文同步刊登於TIPS網站(https://www.tips.org.tw)