美國聯邦通訊傳播委員會完成空白頻段干擾測試

  美國聯邦通訊傳播委員會(Federal Communications Commission, FCC)於今(2008)年初完成700MHz頻譜拍賣後,在8月份針對空白頻段(white space)中可用以抗干擾之技術進行測試,並於8月11日完成測試。完整的測試報告預計將在9月份公布。FCC並可望在未來幾個月內表決是否開放空白頻段。

 

  所謂「空白頻段」係指無線電視數位化之後,位於各電視頻道之間未被使用之閒置頻段。Google、Motorola、Microsoft等公司近一、二年來持續遊說FCC開放空白頻段(white space)免執照使用,以促進無線寬頻服務之發展。

 

  儘管數位無線電視台及Verizon等正使用該頻段之業者有干擾疑慮,然主張開放空白頻段之公司深信開放空白頻段對於新興無線寬頻服務之發展將大有助益,且透過感測技術(sensing technology)或地理定位科技(geolocation technology),即可使得無線裝置於使用空白頻段之同時,不至於干擾數位無線電視台或其他取得執照使用該頻段之業者。

 

  關於試驗結果,無線麥克風業者Shure之資深公關經理Mark Brunner 表示,感測技術幾乎完全無法準確偵測使用中之無線麥克風或電視頻道是否正播送中,自然無法避免干擾發生。支持開放空白頻段之Motorola公司則表示,儘管感測技術無法避免干擾發生,但是Motorola所使用之地理偵測科技則在測試中被證實可有效避開正在使用中之頻段,避免干擾情況發生。

相關連結
※ 美國聯邦通訊傳播委員會完成空白頻段干擾測試, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2875&no=66&tp=1 (最後瀏覽日:2026/02/11)
引註此篇文章
你可能還會想看
歐盟研究揭示研發策略新方向 將以氣候變遷、能源、健康與中小企業為主軸

  歐盟執委會於6月公布新的一般策略架構(Common Strategic Framework,CSF),在歐盟第七期研究架構計畫(FP7)於2013年告一段落後,CSF鎖定的研發策略方向仍會繼續,然此同時也引發一些不同的意見。為此執委會於6月間邀集產官學研進行討論,並於6月底揭示了新的計畫—Horizon 2020—。   歐盟執委會早於2011年初即發佈歐盟競爭力白皮書,揭櫫了未來新一期研究架構計畫之政策方向,其對於現有政策結構與資助機制有不小的衝擊。   新的CSF以氣候變遷、能源、健康與中小企業為研發資助之主軸,而為瞭解並蒐集各界包括大學、國有研究機構、各國政府以及企業界的意見,執委會於今年2月間發布了意見徵詢綠皮書以預先蒐集各界意見。根據執委會的規劃,新的CSF除要求教育體系應跟隨業界研發人才需求的腳步外,更鼓勵中小企業未來投入創新活動,因為執委會發現,歐洲的企業研發投資經費總額,僅有日本和南韓的一半。   歐盟執委會表示,氣候變遷、能源、健康與中小企業為未來研究資源資助與投入的方向,以呼應歐洲民眾的期待。此外,針對目前計畫所存在的行政效率不彰、缺乏透明性及計畫遲延等問題,也將列入未來改善重點,為此,歐洲議會已於6月進行FP7期中檢討時通過解決方案,日後將靠各國分別於歐盟及國家層級的計畫執行與管理中落實。   Horizon 2020計畫將於2014至2020年間斥資800億歐元於研發與工作機會的創造,以提升歐盟競爭力,後2013時期(post-2013)歐盟則將致力於化解計畫執行的分歧,確實協調各國投入新計畫的步調一致性。

日本內閣府公布最新科學技術基本計畫草案,期以智慧聯網服務平台實現超智能社會

  日本內閣府2015年12月10日於「綜合科學技術創新會議」上公布最新「科學技術基本計畫」草案,預計將投入26兆日圓,約占GDP1%的資金。該計畫之法源基礎係1995年公布之《科學技術基本法》第9條第1項,要求政府自1996年開始制定以五年為期,整體、宏觀且跨部會之科技發展計畫,目前最新之「第五期科學技術基本計畫」將於2016年開始施行。   「第五期科學技術基本計畫」共計七章,作為本期計畫核心之第二至第五章,揭櫫四大原則及相應規畫: 一、 以未來產業創新及社會變革為方向創造新價值(第二章)   旨在發展對未來產業創新及社經變遷具有前瞻性之技術及服務,如智慧聯網、巨量資料、人工智慧等,並以此為基礎實現領先世界之「超智能社會」。 二、 因應經濟社會新課題(第三章) 1. 確保能源、資源及糧食供應穩定。 2. 因應超高齡化、人口減少等問題,打造永續發展的社會。 3. 提高產業競爭力及地區活力。 4. 確保國家安全及國民安全。 5. 因應全球範圍內發生的社經問題,並對世界發展做出具體貢獻。 三、 強化科技創新基礎能力(第四章)   企圖打破產官學界間障壁,加速人才流動及人才多樣化,對造成障礙之制度進行改革,此外,將增加青年及女性研究者比例,及提升學術論文品質。 四、 構築人才、知識、資金三要素的良性循環制度以朝向創新發展(第五章)   將透過產官學界合作,打造創新人才培育及適其發展之環境,強化國際知識產權及標準化之運用,並依國內各區域特性推動相關創新措施。   在這當中,「實現超智能社會」為本期計畫最重要之發展目標,由於資通訊技術高度發展帶動生產、交通、醫療、金融、公共服務等各方面之巨大變革,創造出新產品、新服務,卻也相應帶來新挑戰及社會問題,日本政府計畫打造「智慧聯網服務平台」(IoTサービスプラットフォーム),將內閣府2015年6月19發布之「科學技術創新綜合戰略2015」中所列舉的11個系統分階段完成串連整合,以推動跨系統間之數據應用,達成各科學領域巨量資料之流通使用,同時兼顧資訊安全保障的「超智能社會」。

美國2020年國防太空戰略(Defense Space Strategy)

  美國國防部於2020年6月17日發布「國防太空戰略」(Defense Space Strategy),作為確保美國維持其太空戰略優勢的發展藍圖。國防部長Mark T. Esper指出,一個安全、穩定且開放的太空領域是美國用以支持其國家安全、繁榮科學發展的基礎,然而在各國太空技術競逐之下,太空已儼然成為新的作戰領域(warfighting domain),對此美國應針對政策、策略、任務、投資、能力與專業等面向實施全面性的改革,「國防太空戰略」擘劃出美國如何在接下來的10年內達成其確保美國太空戰略優勢的目標。   「國防太空戰略」提出三大目標:首先,國防部將支持並捍衛美國在太空中的軍事行動自由(freedom of operations),並遏止任何具有敵對意圖的使用以維持美國的太空優勢;其次,美國太空軍(U.S. Space Force)將運用其先進的國防太空技術優勢以協助美國及其盟友的太空軍事行動,並支持民間與商用太空技術產業發展;最後,美國將與盟友共同維持太空領域的穩定,防止任何侵略性的太空活動、建構國際公認的太空行為準則,並支持美國在太空交通與長期外太空活動的領導地位。   為了達成上述三大目標,「國防太空戰略」提出四個優先行動方向,分別為:(1)藉由太空軍的組織改造整合資源,以應對敵對勢力的太空軍事行動並建立全面性的太空軍事優勢。(2)提升作戰層次,整合太空軍事力量包含任務、情報、技能與人員於國家與國際聯合軍事行動當中。(3)提升國際對於太空潛在威脅的重視,推動國際太空行為準則以打造太空戰略環境。(4)透過情報共享、研發與採購(research, development, and acquisition, RD&A)與盟友、合作夥伴、產業及其他政府部門合作,提出對於國家太空政策與國際太空行為準則的建議。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP