CAFC判決未遵守自由授權條款構成著作權侵害

  美國聯邦巡迴上訴法院(CAFC)於2008年8月13日,在Jacobsen v. Katzer一案中,對於未遵守自由軟體授權條款而使用他人著作,作成構成著作權侵害之判決,扭轉地方法院之判決結果。由上訴人Jacobsen經營的JMRI(Java Model Railroad Interface),透過多數參與者集體協作的程式DecoderPro,為開放資源的自由軟體,採取Artistic License模式,供模型火車迷編輯解碼器晶片(decoder chip)的程式以操控模型火車;被告Katzer從 DecoderPro下載了數個定義檔來製作一套市售軟體稱Decoder Commander,卻未遵守該自由授權條款,包括未標示JMRI為原始版本之著作權人、可從何處取得標準版本、及修改後版本與原始版本差異部份之註記等。

 

  Jacobsen認為Katzer的侵害著作行為已造成不可回復之損害,請求法院暫發禁止命令(preliminary injunction)以停止Katzer的違法行為,地方法院認為被告乃違反非專屬授權契約,應依違反契約責任負責,不另構成著作侵權行為,駁回暫發禁止命令的請求。

 

  聯邦巡迴上訴法院認為本案爭點在於「自由軟體授權條款的性質究屬契約內容(covenant)或授權條件(conditions of the copyright license)?」,由於Artistic License之用語為「在符合下列條款之條件下」(provided that the conditions are met )方能重製、修改及散布,以遵守授權條款為取得授權之條件,本案中Katzer未能遵守條款,因而根本未取得授權,其行為屬無權使用而構成侵害著作權,是以命地方法院就暫發禁止命令一事重新審理。在善意換取善意(Creative Common,創用CC)及分享著作的潮流下,支持者譽此結果為自由軟體的一大勝仗。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ CAFC判決未遵守自由授權條款構成著作權侵害, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2881&no=57&tp=1 (最後瀏覽日:2025/12/14)
引註此篇文章
你可能還會想看
日本經濟產業省公布自動駕駛後續之政策方針報告書

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

大倫敦政府提倡倫敦城市資料市集

大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「城市資料策略」(City Data Strategy),以發展「城市資料市集」為核心的「數位倫敦」(Data for London) 計畫,希望與合作夥伴共同推展「城市資料市集」,以節省資金、培育創新、推動經濟成長,並迎接可能之挑戰。 「數位倫敦」將城市資料分為開放資料(Open Data)、民間企業資料(Private Data)、商業資料(Commercial Data)、感知資料(Sensory Data),及公眾來源資料(crowded-sourced data)等5個類型。此外,蒐集之資料類型及如何使用該等資料,亦為計畫的執行重點之一。 「數位倫敦」之實施計畫(Implementation Plan)分短、中、長期,以近期發布之短、中期的路徑圖而言,大倫敦政府計劃在2年內分 5個階段,從編制資料目錄,建立資料庫聯盟,利用雲端系統建置一能預測並開發、利用新資料來源之資料庫,並以「引用資料,而不複製資料」之原則,持續與公開來源社群及夥伴合作。 「城市資料市集」作為發展大倫敦基礎設施建設之一環,從資料蒐集、過濾檢測、資料庫平台管理、整合平台及服務,進而建立新商業模式,期將倫敦打造成世界首屈一指的智慧城市。

美國國會通過700MHz D區段頻譜之規範

  為實施公共安全網路計畫,美國國會在2012年二月通過「2012年中產階級稅收減免及創造就業法案」(Middle Class Tax Relief and Job Creation Act of 2012),將700MHz頻段中既有存在之公共安全寬帶頻譜(763-769 MHz/793-799 MHz)與相鄰的D block的頻段(758-763MHz與788-793MHz)規劃成 「互通公共安全寬頻網路」(interopertable public safety broadband network),進行頻譜拍賣。   雖FCC經本法案授權執行D Block頻段的拍賣,但也限縮其職權規定FCC不得限制任何特定業者參與競標。針對FCC職權受到限制,業者認為可避免FCC在拍賣期間逕自訂定特別規則之情形。但法案仍保留FCC執行「普遍適用性的規定」(rules of general applicability)之權利,以頻譜聚合(spectrum aggregation)的規定促進市場競爭。對此,主導業者擔心FCC可能藉採取「頻譜上限」 (spectrum cap)的管制手段來限制其獲得大量頻譜的機會。   另外,面對全國性公共安全寬頻網路部署之需要,國會將授權行政部門建立「緊急救難管理局」(First Network Authority, FirstNet)來進行整體網路之開發規劃。在FirstNet尚未成立之前,FCC將暫時承擔此一過渡期間管理全國公共安全寬頻網路之責任。但FirstNet在未來是否能依照國會所期待順利掌管整體公共安全寬頻網路之運作,並達成建構一跨機關、部會以及區域的無縫互通寬頻網路平台(a nationwide interoperable public safety broadband network)之期望,FCC認為該局所任命之委員會委員所具備之專業度,以及各聯邦機構是否充分的支持將是成功之關鍵。

TOP