醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。 就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。 由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。
美國參議院通過對開放政府資料(Open Government Data)政策法制化具指標性意義之「數位責任與透明法」(Digital Accountability and Transparency Act,DATA Act)草案美國參議院於2013年4月10日一致通過「數位責任與透明法」(Digital Accountability and Transparency Act,DATA Act)草案,現在續行送往眾議院審查。DATA 法草案目的在於使政府支出資料更為透明公開,且以得再利用的方式提供。該草案若通過,將建立使用聯邦基金(Federal funds)做支出或受資助的政府機關單位或其他實體財務資料的標準;擴展USAspending.gov網站含括上述資料,並要求聯邦政府以電子格式,自動化、標準化的方式公佈財務管理及採購相關資料,使公私部門便於近用與進行分析。目前草案版本內文並無規定資料特定格式的資料標準,但可得確定的是必須為被廣泛接受、非專有、可搜尋,且獨立於平台使用之電腦可判讀格式,以及可得一致適用於各機關單位之聯邦得標廠商與接受政府補助之實體的特殊標誌。 曾協助草擬2011年DATA法草案之「資料透明聯盟」(Data Transparency Coalition)執行長Hudson Hollister表示,DATA法草案把結構性的資料模式應用於聯邦政府支出時,將前所未有的激發責任與支出情況間的關係;同時,也將聯邦支出資料(federal spending information)轉化為開放政府支出資料(open spending data),成為強化民主治理與激發創新的重要公共資源。然而,由於DATA法草案所涉及的機關眾多,主要包括商務部(DOC)、財政部(DOT)、總務管理局(GSA),與預算管理辦公室(OMB),該法案通過後是否能落實,絕大部分還是取決於白宮是否會要求聯邦政府機關單位完整且迅速的遵循法律的構成要件。
加拿大政府提交予國會《人工智慧資料法案》加拿大政府由創新、科學和工業部長(Minister of Innovation, Science and Industry)代表,於2022年6月16日提交C-27號草案,內容包括聯邦的私部門隱私權制度更新,以及新訂的《人工智慧資料法案》(Artificial Intelligence and Data Act, 下稱AIDA)。如獲通過,AIDA將是加拿大第一部規範人工智慧系統使用的法規,其內容環繞「在加拿大制定符合國家及國際標準的人工智慧設計、開發與應用要求」及「禁止某些可能對個人或其利益造成嚴重損害的人工智慧操作行為」兩大目的。雖然AIDA的一般性規則相當簡單易懂,但唯有在正式發布這部包含絕大多數應用狀況的法規後,才能實際了解其所造成的影響。 AIDA為人工智慧監管所設立的框架包含以下六項: (1)方法 以類似於歐盟《人工智慧法案》採用的方式,建立適用於人工智慧系統具「高影響力」的應用方式的規範,關注具有較高損害與偏見風險的領域。 (2)適用範圍 AIDA將適用於在國際與省際貿易及商業行動中,設計、發展或提供人工智慧系統使用管道的私部門組織。「人工智慧系統」的定義則涵蓋任何「透過基因演算法、神經網路、機器學習或其他技術,自動或半自動處理與人類活動相關的資料,以產生結果、做出決策、建議或預測」的技術性系統。 (3)一般性義務 I 評估及緩和風險的措施 負責人工智慧系統的人員應評估它是否是一個「高影響系統」(將在後續法規中詳細定義),並制定措施以辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果。 II 監控 對該「高影響系統」負責的人員應建立準則,以監控風險緩解措施的遵守情況。 III 透明度 提供使用管道或管理「高影響系統」運作的人員應在公開網站上,以清晰的英語揭露 i 系統如何或打算如何使用。 ii 系統所生成果的類型及它所做出的決策、建議與預測。 iii 為辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果,而制定的緩解措施。 iv 法規明定應揭露的其他訊息。 IV 記錄保存 執行受規範活動的人員應遵守紀錄保存要求。 V 通知 若使用該系統將導致或可能導致重大傷害,「高影響系統」的負責人應通知部門首長。 VI 匿名資料的使用 從事法案所規定的活動及在活動過程中使用或提供匿名資料的人員,必須依據規範制定關於(a)資料被匿名化處理的方式(b)被匿名化資料的使用與管理,兩方面的措施。 (4)部長命令 部門首長可以透過命令要求(a)製作紀錄(b)從事審計或聘請一位獨立的審計師執行(c)成立一個專責執行審計程序的組織(d)成立一個在有理由相信「高影響系統」之使用可能造成急迫重大傷害風險時負責進行終止或准許的組織。 (5)行政管理 AIDA為部門首長制定一項,可指定其所管轄部門中一名高級官員為「人工智慧與資料專員」的權利,其職責在協助部門首長管理與執行AIDA。 (6)罰則 違反AIDA規範之罰則主要為按公司、個人之收入衡量的罰款。特定嚴重狀況如以非法方式取得人工智慧訓練用資料、明知或故意欺騙大眾造成嚴重或心理傷害或財產上重大損失,亦可能判處刑事監禁。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。