Apple實施一方法,主要運用於iPhone手機作業系統上,增加手機警示功能(通知未接訊息特徵)。
AppleInsider發現Apple所申請的專利案,主要針對手機警示功能,與增進iPhone手機作業系統效能為主,其中著重於通知遺漏訊息(notifications of missed messages)及調整手機運用屬性偏好(application preferences)。其描述用戶者可運用手機介面上一通知儀表板(notification dashboard)顯示所有接收訊息的詳細資訊,如未接來電, SMS簡訊等。
目前iPhone手機在呈現像即時文字訊息或未接來電等資訊時,用戶者必須將螢幕鍵開鎖,指定回手機主畫面,並開啟特殊功能,以利取得接收到的文字訊息或語音信箱。
Apple新增通知資訊功能,可讓iPhone手機於開鎖(unlock)狀態下,在接獲到即時電子郵件或未接來電等相關訊息時,用戶者不需要將螢幕鍵開鎖,可直接於iPhone手機介面上滑動儀表板(bar),控制在正確的通知資訊位置,用戶者就可直接即時連接此內容,以減少開關鎖之頻率。AppleInsider指出Apple運用此通知服務,間接地指出允許iPhone手機可持續維持於上網之狀態。
AppleInsider指出Apple運用於iPhone手機介面的通知儀表板,主要複製Apple的Mac OS X儀表板之應用程式功能。
註:AppleInsider網站成立於1997年,為提供Apple相關即時資訊之入口網站。
隨著犯罪集團洗錢管道與手法日新月異,嚴重威脅金融秩序與經濟發展,美國財政部金融犯罪執法網(Financial Crimes Enforcement Network, FinCEN)於2021年6月30日發布防制洗錢與打擊資助恐怖主義(anti-money laundering and countering the financing of terrorism, AML/CFT)政策的優先事項(Priorities),目的係為了應對日益猖獗之洗錢犯罪行為,幫助金融機構評估其風險,並調整其防制洗錢計畫和資源運用優先順序,以提升國家AML/CFT政策效率與有效性。 依據發布內容,優先事項包括:(1)貪汙;(2)網路安全與虛擬貨幣相關之網路犯罪;(3)國內外資助恐怖分子;(4)詐欺;(5)跨國犯罪組織活動;(6)毒品販運組織活動;(7)人口販運與人口走私(human trafficking and human smuggling);(8)資助大規模毀滅性武器擴散(proliferation financing),反映了美國國家安全與全球金融體系長期以來存在之威脅,並將虛擬貨幣用於洗錢、資助恐怖主義,及支付勒索軟體攻擊贖金等納入防制洗錢範疇,防止虛擬貨幣成為洗錢管道。 FinCEN預計於2021年底前提出實施辦法,並根據美國防制洗錢法(Anti-Money Laundering Act)之要求,至少每4年更新一次優先事項,以因應美國金融體系與國家安全面臨的各種新興威脅。
Apple獲得針對可攜式電子裝置之防竊系統的專利Apple Inc.成功取得一個防竊安全系統的專利權,該系統能簡單地藉由偵測外界環境而防止筆記型電腦、電話以及其他可攜式電子裝置遭竊。 於原始申請案中,申請人提到了許多竊案皆提供了某些非偶然的移動線索,例如快速且持續的移動。因此,藉由分析該裝置於一段期間內的移動,該防竊系統應可辨別出竊盜或合法使用者。因此,當使用者暫時離開時,他們能放心地將可攜式電子裝置留下,而不需要加裝纜線鎖或其它物理性安全裝置。 根據該專利,此防竊系統包含加速規(accelerometer)以及相對應的軟體。加速規可在某些位置或震動情況下自動傳送一訊號至該裝置核心的硬體,致使其觸發聲音或影像警報。此外,該裝置也能完全被鎖住,並且需要一組密碼使其回復到正常使用狀態。 雖然Apple很小心地避免在說明前述機制時指明特定的應用硬體,但藉由該專利說明書的描述,可以很清楚的了解Apple的構想是將該防竊系統安裝在iPod上。當然,手機以及筆記型電腦也是安裝該防竊系統的顯著標的。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。