如何規範通聯紀錄的詐取及販售行為,成為美方關注的焦點

  美國第四大無線通訊業者T-Mobile於1月24日依據華盛頓州暴利罪法(criminal profiteering laws)向該州高等法院提出申請,要求法院對Data Find Solutions公司、1st Source Information Specialists公司及其他有關的公司與個人發出禁制令(injunction),以防止上述公司透過詐欺手段獲取及販售T-Mobile客戶的通聯紀錄(call records)。


  目前包括了州議員、州檢察總長及聯邦通訊傳播委員會(Federal Communications Commission),均積極探求相關的法律規定,如果Data Find Solutions等公司非法獲取及販售通聯紀錄的情況屬實,將依法予以定罪。


  無獨有偶,在一週之前伊利諾州檢察總長也對1st Source Information Specialists公司提出了訴訟,控告該公司非法取得及販售通聯紀錄。數位眾議員及參議員,已經公布了相關立法計畫,未來凡以欺詐的手段獲取及出售通聯紀錄都將被視為違法行為。參議院多數黨領袖Bill Frist議員即表示,「詐取客戶通聯紀錄並透過網路出售是一錯誤的行為,必須加以制止。」

相關連結
※ 如何規範通聯紀錄的詐取及販售行為,成為美方關注的焦點, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=290&no=57&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
科技產業申請租稅減免 國稅局:申報浮濫

  高科技企業申請促產條例相關租稅減免浮濫,尤其是在可享高額抵減的研發項目上,爭議最多。實務上,人才培育的投資抵減減稅空間較少,頂多幾十萬元或幾百萬元,但研發投資抵減最高可達幾十億元,因此常見的爭議也最多。由於研發費用可提列為費用、又可抵稅,對企業來說效益很高,因此很多公司都先申報為研發費用,等被國稅局查到再說;另將製造、銷售費用列為研發費用的情形不勝枚舉。   依照公司研究與發展及人才培訓支出適用投資抵減辦法審查要點第1點附表,研發支出只有包括全職研發人員薪資等九種支出才能抵減,而且業者須附薪資表及證明文件證明,才能減稅。但因為研發誘因優渥,企業總是先報再說,因此行政法院投資抵減的相關訴訟,十之八九都是國稅局勝訴。根據公司研究與發展及人才培訓支出適用投資抵減辦法第5條規定,公司的研發支出,在同一課稅年度內得按百分之三十抵減當年度應納營所稅額;支出總金額超過前二年度研發經費平均數者,超過部份得按百分之五十抵減當年度應納營所稅,當年度營所稅額不足抵減者,得在以後四年度營所稅額抵減。   國稅局提醒,申請研發減免企業必須提供研究計畫等證明,否則舉證不足反將被國稅局要求補稅,恐衝擊公司當年獲利。一般來說,適用投抵減稅金額愈高的公司,也愈常被選案查核,確保公司沒有僥倖逃稅心理。如果投抵項目涉及大陸地區,像是人才培訓支出,則應依臺灣地區與大陸地區人民關係條例第24、25、25條之1條等法令規定,經主管機關核准,否則也將遭國稅局剔除補稅。

歐盟執委會發布「歐洲風電行動計畫」,支持歐洲風電相關產業之發展

歐盟執委會於2023年10月24日發布「歐洲風電行動計畫(European Wind Power Action Plan)」,以支持歐洲風電相關產業發展並強化其競爭力,同時確保該產業能在綠色轉型的過程中持續扮演關鍵角色,並以此提高整體風電的裝置容量。該計畫要求委員會、成員國和產業應立即採取以下6個方向的行動措施: (1)透過可預測且快速的許可程序,加速風電的建置 執委會與成員國將共同發布「Accele-RES」倡議,推動許可流程的數位化、許可機關的職員訓練及建立政策指引文件,以及提高許可相關議題之討論層級;並且,鼓勵成員國透過風電承諾(Wind Pledges)、透明的競標時程表和長期的規劃來提高開發專案進度的透明度。 (2)改善風電競標機制的設計 在《淨零產業法(Net-Zero Industry Act)》草案和電力市場設計改革的基礎上,建立更客觀、非歧視性且透明化的風電競標標準,並將目標入法使相關策略具法律約束力。 (3)促進資金的取得 為了擴大對於歐洲風能產業的投融資,歐盟執委會將透過創新基金、歐洲投資銀行(EIB)提供歐盟風電相關產業的資金,以及融資擔保;並利用國家援助(State Aid)規範對歐盟風電供應鏈提供補助。 (4)建立公平且具競爭性的國際環境 為確保風電產業能在公平競爭的環境中順利營運,歐盟執委會將密集監管可能有利於外國業者的不公平貿易行為,並將持續利用貿易協定促進歐盟業者進入外國市場,同時推動風電產業的規格標準化。 (5)培育產業技能 建立「大規模技能合作夥伴關係(Large scale skills partnerships)」以及透過《淨零產業法》推動「淨零產業技能學院」,培訓風電產業技術人才,包含針對青年、婦女與長者的職能培育計畫,以及勞工技能提升與再培訓計畫,因應積極的氣候目標以及市場規模快速擴張所創造之人力需求。 (6)鼓勵產業投入與成員國的承諾 歐盟執委會將與成員國和風電產業共同制定歐盟風能憲章(EU Wind Charter),促進更多風電利害關係人參與締約,擴大憲章適用對象,以建立歐洲風電產業能保持競爭力的優良環境。

美國國會提出法案,使儲能設備享有投資稅額抵減

  美國國會於2021年3月9日提出「2021年儲能稅制獎勵及設置法草案」(Energy Storage Tax Incentive and Deployment Act of 2021, H.R.1684),擬擴大投資稅額抵減制度(Investment Tax Credit)之適用範圍。有鑑於現行投資稅額抵減制度並不包含儲能設備,然儲能設備對於再生能源發展又具有重要地位,故為獎勵儲能設備之設置,同時輔助再生能源發展,美國國會遂提出前揭草案,並修正美國1986年國內稅收法(Internal Revenue Code of 1986, 26 U.S. Code)§48(a)(3)(A)(vii)以及§25D(a)規定,擬將投資稅額抵減制度擴張及於儲能設備,亦即,未來如草案通過後,不論是發電業者或用電戶只要有合乎規範設置儲能設備,即可適用投資稅額抵減制度,並依照其投資於儲能設備之額度抵減所得稅。   依照美國1986年國內稅收法,現行美國投資稅額抵減制度主要是依照發電業者或用電戶「開始設置再生能源發電設備之時點」以及「設置成本」給予不同程度之所得稅抵減,如發電業者或用電戶越早開始設置再生能源發電設備,發電業者或用電戶可申請抵減所得稅之額度則越高,最高可達該再生能源發電設備成本之30%;反之,如開始設置的時間越晚,則可申請抵減所得稅之額度則越低。舉例言之,如申請人於2020年1月1日以前開始設置再生能源發電設備,而於2024年1月1日前將再生能源發電設備投入營運,此時可申請抵減所得稅之額度可達該再生能源發電設備成本之30%,反之,如為2021年間開始設置,而於2024年1月1日前將再生能源發電設備投入營運,此時可申請抵減所得稅之額度僅有該再生能源發電設備成本之22%。   依美國國家稅務局(Internal Revenue Service, IRS)「針對投資稅額抵減制度施工起點標準」行政函釋(Beginning of Construction for the Investment Tax Credit),有兩種判定再生能源發電設備有開始設置之標準,其一為「物理工作物標準」(Physical Work Test),其二為「5%成本支出標準」(Five Percent Safe Harbor),申請人只要符合任一標準,即可被認定有開始再生能源發電設備設置之行為。於「物理工作物標準」下,只要該再生能源發電設備之重要基礎零件已開始組裝,即可被認定為已經有再生能源發電設備設置的行為;於「5%成本支出標準」下,只要申請人已經支出該再生能源發電設備成本之5%,即可被認定有開始再生能源發電設備設置之行為。但不論以上開何種標準,申請人都必須有不中斷且持續進行設置之事實,始可被認定為其開始設置再生能源發電設備的時間點較早,而申請抵減較多之所得稅,否則即有可能被認定開始設置的時間點較晚,而僅得申請抵減較少之所得稅。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP