美國白宮於2024年5月23日公開呼籲採取行動以打擊利用AI生成性影像,及未經當事人同意傳播真實影像的性虐待行為。此次呼籲源自白宮「解決線上騷擾與虐待問題工作小組」(Task Force to Address Online Harassment and Abuse)相關行動、總統第14110號行政命令-「安全、可靠且可信任之AI開發及利用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence),以及尖端AI公司自願管理AI風險之承諾(Voluntary AI Commitments)。 白宮指出,迄今為止生成式AI已淪為性虐待的主要工具,同時,涉及未經同意散布或威脅散布私人性影像,亦將對受害者造成嚴重的心理傷害。白宮呼籲相關利害關係人透過自願性承諾,預防與減輕性虐待影像之影響,如: (1)阻止性虐待影像獲利: 對於從事性虐待影像業務的網站或應用程式,支付平臺與金融機構可限制或拒絕對其提供支付服務。 (2)停止創建深偽性虐待影像 : 對於可透過AI生成性影像之網路服務或應用程式,雲端服務供應商與應用程式商店得減少此類網路服務或應用程式運作。此外,應用程式商店可要求應用程式開發人員採取措施,防止使用者製作非經當事人同意的AI生成性影像。 (3)防止散播性虐待影像: 應用程式與作業系統開發人員可啟用技術保護措施,以保護數位裝置上儲存之內容,防止未經當事人同意分享其影像。 (4)支援並參與為受害者提供有效補救措施之服務: 平臺與利害關係人可選擇與相關組織合作,使性虐待影像受害者可輕鬆且安全地從線上平臺中刪除未經同意之內容。此外,白宮亦呼籲國會修訂於2022年重新授權之「婦女暴力防制法」(Violence Against Women Act Reauthorization),延續並加強原有法律保護效力,同時為AI生成之性虐待影像的受害者提供關鍵援助資源。
歐盟發佈Amazon違反反托拉斯法之初步調查結果,並將對其電商業務展開第二輪調查歐盟執委會於2020年11月10日對Amazon發佈反托拉斯調查之初步調查結果,針對其2019年7月之首次調查提出調查意見書(Statement of Objections, SO),認定Amazon使用大量非公開賣家資料,減少自身作為零售商之競爭風險,相關可能違反歐盟運作條約(TFEU)第102條禁止濫用市場主導地位。 歐盟於2019年7月17日對Amazon展開首次反托拉斯調查。Amazon作為平台,具有雙重身分,第一個身分是作為零售商,在網站上銷售商品;第二個身分是作為平台商,提供第三方賣家銷售商品的市場。因此歐盟認為Amazon在平台上收集價格或活動統計資料,將調查Amazon和第三方賣家的標準協議中,是否允許Amazon分析賣家的買賣統計資料?以及第三方賣家使用「黃金購物車」(Buy Box)的機制為何? 歐盟執委會調查說明,Amazon作為平台,可以大量使用第三方賣家資料,例如訂購及發貨數量、賣家收入、報價次數、物流資料、賣家表現評價、消費者索賠資訊等。然而相關統計數字及資料進入Amazon業務自動化系統,使Amazon零售業務可以大量使用上述非公開資料,以調整自身產品零售報價和業務決策,降低自身作為零售商的市場競爭風險。 此外,歐盟執委會認為,Amazon的「黃金購物車」和「Prime label」機制,使平台上的第三方賣家必須選擇使用Amazon物流、倉儲和售後服務(Fulfillment by Amazon, FBA),才能取得平台的「黃金購物車」和「Prime label」標章,才可能增加產品搜尋曝光度、交易成功率,進而提高銷售量(據統計,Amazon平台超過八成之交易是透過黃金購物車完成)。因此導致消費者大多選擇購買曝光度高、也就是使用Amazon物流的賣家,形成賣家之間的不公平競爭。歐盟執委會後續將啟動第二輪調查,且未言明結束調查時間。
數位模擬分身(Digital Twin)數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。 於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。