歐洲議會對再生能源利用達成協議

  為重新對各類再生能源與用於大眾運輸工具之生質燃料使用量確立具約束力之目標,歐洲議會下之工業及能源委員會於2008(今)年9月11日決定批准一項跨黨派協議案。

 

  今年年初,歐盟執委會曾遞交一項促進歐盟境內對再生能源使用量之建議案,亦即設定至2020年時,歐盟境內再生能源使用量應達總能源使用量之20%;同時,該建議案也包含了一項關於生質燃料使用量亦應達到10%之目標。不過,在考慮關於不斷上揚之糧食價格、生物多樣性之消失及廣受質疑之CO2減量價值等因素後,也導致許多團體要求降低執委會最初設定之目標。而經過數月詳細地分析2千多份修正案報告後,執委會再生能源建議案報告起草人Turmes,在今年9月中旬宣佈,該項建議案目前現已獲得跨黨派支持。

 

  於Turmes報告中,其建議應對生質燃料之使用訂立階段性目標:即(1)至2015年時應達到5%;及(2)至2020年時則應增加至10%;同時,其還特定,就未來達成生質燃油使用比例目標而言,至少有40%應要透過利用「非以糧食或飼料競爭性」為原料之第二代生質燃料,或使用綠色電能與氫能源環保車而來;至於其他種類生質燃油之利用,則應須在符合嚴格之環境永續性標準下,方能一併被納入計算。而為支持年初所提之建議案,德國、英國及波蘭等國也在6月份提出一項新的彈性機制:即在會員國間可透過合作型計畫來達成各自之目標。此外,對至2020年未達目標之會員國,歐洲議會成員將另批准一套「財務性懲罰原則」來處理之;同時,就懲罰所取得之款項,也將成立一項獎勵專款來激勵超過目標之國家。

 

  不過,綠色組織團體卻認為利用生質燃料因具後述缺點如:(1)成本昂貴、(2)對氣候保護方面並無任何助益、及(3)利用不符永續性標準之生質燃油也僅是增加生物多樣性流失與糧食價格而已,故而對於議會批准該協議案感到失望。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐洲議會對再生能源利用達成協議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2913&no=57&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
為保護社交網站青少年安全,MySpace與美國執法當局共同簽署一份社交網站重要安全原則之聯合聲明

  為保護青少年使用網路安全,避免性侵害犯罪者透過社交網站誘拐進而性侵未成年人,亦為提升警方追捕及起訴性侵害犯罪者的效能,美國49州及哥倫比亞特區執法當局與美國最大的社交網站 MySpace,在歷經了2年時間的討論後,於今年1月對外共同宣佈一項「社交網站重要安全原則之聯合聲明(Joint Statement on Key Principles of Social Networking Sites Safety)」,並計劃將此一原則陸續推廣於其他類似社交網站。   於該聯合聲明中,MySpace首先同意組織一個網路安全技術的專門小組,承諾研發線上身份認證技術和其他線上安全工具,以創造一個安全的線上社交環境,而該網路安全小組成員包含網路公司代表、身份認證專家、非營利組織成員,以及其他科技公司代表等。MySpace並允諾設計並落實相關技術與功能,以防止14歲以下的兒童使用MySpace網站,及避免青少年從MySpace網站上接收到不適當的內容、或有機會與成人不適當的接觸。另MySpace社交網站亦將透過網站經驗分享、提供父母免費的監控軟體、兒童郵件註冊等方式,教育父母、教育家和兒童安全和負責的社交網站使用態度。MySpace社交網站的營運者更同意與執法人員共同努力,提升調查和追訴網路犯罪行為的效能,為此MySpace將建立一個24小時的免費諮詢電話,以回應執法人員辦案上的需求。

日本與歐盟達成GDPR適足性認定之合意,預定於今年秋天完成相關程序

  日本個人情報保護委員會於5月31日與歐盟執行委員會,對於取得之個人資料跨境傳輸相互承認達成實質合意。歐盟今年5月施行之歐盟個人資料保護規則(European Union General Data Protection Regulation,GDPR)對於個人資料之跨境傳輸係採「原則禁止、例外允許」模式,因此只有在符合例外之情形下,個人資料才能進行跨境傳輸,而例外獲得許可的情形包括由企業自主採行符合規範的適當保護措施,或取得個資當事人明確同意等方式。此外,GDPR也規定對第三國或地區個人資料保護水平是否達到GDPR標準,為適足性認定制度,取得此一認定資格者,即可自由與歐盟間進行個人資料跨境傳輸。目前有瑞士等11個國家及地區取得認定,日本則尚未取得。   日本為了減輕企業的負擔,2016年7月個人情報委員會決定處理方針,以取得相互認定承認為目標;於2017年1月歐盟執行委員會政策文書發表,將日本列為適足性認定之優先國家,將持續進行雙方後續對話。自2016年4月自2018年5月為止累計對話協商53次。於2017年5月施行修正之個人資料保護法,新導入域外適用規定,並對於國外執行當局為必要資訊提供為相關規定。依據上述對話意見,今年2月14日審議擬定「個人資料保護法指引-歐盟適足性認定之個人資料傳輸處理編(個人情報の保護に関する法律についてのガイドラインーEU域内から十分性認定により移転を受けた個人データの取扱い編)」草案,於今年4月25日至5月25日完成草案預告及意見徵集程序,預定於今年7月上旬訂定發布。其後,將於今年秋天完成歐盟與日本間相互指定與認定程序。亦即,個人情報保護委員會基於個人資料保護法第24條規定,指定歐洲經濟區(EEA)為與日本有同等水準之個人資料保護制度之外國,而歐盟執行委員會依據GDPR第45條規定,認定日本為具備適足保護水準。相互認定後,日本與歐盟間得相互為個人資料傳輸,如有相互協力必要性發生時,個人情報保護委員會及歐洲執行委員會應相互協議以為解決。

世界衛生組織發布歐洲區域人工智慧於醫療系統準備情況報告,責任規則為最重要之關鍵政策因素

世界衛生組織發布歐洲區域人工智慧於醫療系統準備情況報告,責任規則為最重要之關鍵政策因素 資訊工業策進會科技法律研究所 2025年12月18日 世界衛生組織(World Health Organization, WHO)於2025年11月19日發布「人工智慧正在重塑醫療系統:世衛組織歐洲區域準備情況報告」(Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region)[1],本報告為2024年至2025年於WHO歐洲區域醫療照護領域人工智慧(AI for health care)調查結果,借鑒50個成員國之經驗,檢視各國之國家戰略、治理模式、法律與倫理框架、勞動力準備、資料治理、利益相關者參與、私部門角色以及AI應用之普及情況,探討各國如何應對AI於醫療系統中之機會與挑戰。其中責任規則(liability rules)之建立,為成員國認為係推動AI於醫療照護領域廣泛應用之最重要關鍵政策因素,因此本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,透過救濟與執法管道以保護病患與醫療系統之權益。 壹、事件摘要 本報告發現調查對象中僅有8%成員國已發布國家級醫療領域特定AI策略(national health-specific AI strategy),顯示此處仍有相當大之缺口需要補足。而就醫療領域AI之法律、政策與指導方針框架方面,46%之成員國已評估於現有法律及政策相對於醫療衛生領域AI系統不足之處;54%之成員國已設立監管機構以評估與核准AI系統;惟僅有8%之成員國已制定醫療領域AI之責任標準(liability standards for AI in health),更僅有6%之成員國就醫療照護領域之生成式AI系統提出法律要求。依此可知,成員國對於AI政策之優先事項通常集中於醫療領域AI系統之採購、開發與使用,而對個人或群體不利影響之重視與責任標準之建立仍然有限。於缺乏明確責任標準之情況下,可能會導致臨床醫師對AI之依賴猶豫不決,或者相反地過度依賴AI,從而增加病患安全風險。 就可信賴AI之醫療資料治理方面(health data governance for trustworthy AI),66%成員國已制定專門之國家醫療資料戰略,76%成員國已建立或正在制定醫療資料治理框架,66%成員國已建立區域或國家級醫療資料中心(health data hub),30%成員國已發布關於醫療資料二次利用之指引(the secondary use of health data),30%成員國已制定規則,促進以研究為目的之跨境共享醫療資料(cross-border sharing of health data for research purposes)。依此,許多成員國已在制定國家醫療資料戰略與建立治理框架方面取得顯著進展,惟資料二次利用與跨境利用等領域仍較遲滯,這些資料問題仍需解決,以避免產生技術先進卻無法完全滿足臨床或公衛需求之工具。 就於醫療照護領域採用AI之障礙,有高達86%之成員國認為,最主要之障礙為法律之不確定性(legal uncertainty),其次之障礙為78%之成員國所認為之財務可負擔性(financial affordability);依此,雖AI之採用具有前景,惟仍受到監管不確定性、倫理挑戰、監管不力與資金障礙之限制;而財務上之資金障礙,包括高昂之基礎設施成本、持續員工培訓、有限之健保給付與先進AI系統訂閱費用皆限制AI之普及,特別於規模較小或資源有限之醫療系統中。 就推動AI於醫療照護領域廣泛應用之關鍵政策因素,有高達92%之成員國認為是責任規則(liability rules),其次有90%之成員國認為是關於透明度、可驗證性與可解釋性之指引。依此,幾乎所有成員國皆認為,明確AI系統製造商、部署者與使用者之責任規則為政策上之關鍵推動因素,且確保AI解決方案之透明度、可驗證性與可解釋性之指引,也被認為是信任AI所驅動成果之必要條件。 貳、重點說明 因有高達9成之成員國認為責任規則為推動AI於醫療照護領域廣泛應用之關鍵政策因素,為促進AI應用,本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,並建立相應機制,以便於AI系統造成損害時及時補救與追究責任,此可確保AI生命週期中每個參與者都能瞭解自身之義務,責任透明,並透過可及之救濟與執法管道以保護病患與醫療系統之權益;以及可利用監管沙盒,使監管機構、開發人員與醫療機構能夠在真實但風險較低之環境中進行合作,從而於監管監督下,於廣泛部署前能及早發現安全、倫理與效能問題,同時促進創新。 此外,WHO歐洲區域官員指出,此次調查結果顯示AI於醫療領域之革命已開始,惟準備程度、能力與治理水準尚未完全跟進,因此呼籲醫療領域之領導者與決策者們可考慮往以下四個方向前進[2]: 1.應有目的性地管理AI:使AI安全、合乎倫理與符合人權; 2.應投資人才:因科技無法治癒病人,人才是治癒病人之根本; 3.需建構可信賴之資料生態系:若大眾對資料缺乏信任,創新就會失敗; 4.需進行跨國合作:AI無國界,合作亦不應受限於國界。 參、事件評析 AI於醫療系統之應用實際上已大幅開展,就歐洲之調查可知,目前雖多數國家已致力於AI於醫材監管法規與資料利用規則之建立,據以推動與監管AI醫療科技之發展,惟由於醫療涉及患者生命身體之健康安全,因此絕大多數國家皆同意,真正影響AI於醫療領域利用之因素,為責任規則之建立,然而,調查結果顯示,實際上已建立醫療領域AI之責任標準者,卻僅有8%之成員國(50個國家中僅有4個國家已建立標準),意味著其為重要之真空地帶,亟待責任法制上之發展與填補,以使廠商願意繼續開發先進AI醫療器材、醫療從業人員願意利用AI醫療科技增進患者福祉,亦使患者於受害時得以獲得適當救濟。亦即是,當有明確之責任歸屬規則,各方當事人方能據以瞭解與評估將AI技術應用於醫療可能帶來之風險與機會,新興AI醫療科技才能真正被信任與利用,而帶來廣泛推廣促進醫療進步之效益。由於保護患者之健康安全為醫療領域之普世價值,此項結論應不僅得適用於歐洲,對於世界各國亦應同樣適用,未來觀察各國於AI醫療領域之責任規則發展,對於我國推廣AI醫療之落地應用亦應具有重要參考價值。 [1] Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region, WHO, Nov. 19, 2025, https://iris.who.int/items/84f1c491-c9d0-4bb3-83cf-3a6f4bf3c3b1 (last visited Dec. 9, 2025). [2] Humanity Must Hold the Pen: The European Region Can Write the Story of Ethical AI for Health, Georgia Today, Dec. 8, 2025,https://georgiatoday.ge/humanity-must-hold-the-pen-the-european-region-can-write-the-story-of-ethical-ai-for-health/ (last visited Dec. 9, 2025).

美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

TOP