美國及歐盟於2021年6月在美歐峰會達成共識,宣布成立美歐貿易和技術委員會(EU-US Trade and Technology Council, TCC),並於2021年9月29日首次在美國匹茲堡舉辦會議,由歐盟執委會、美國國務卿、美國商務部及貿易代表共同主持,討論歐美未來在貿易與技術合作空間。 TTC目標是擴大並深化貿易與跨大西洋投資關係,更新21世紀國際經貿規則。美歐間在全球最大共同民主價值觀和經濟關係的基礎上,確保貿易和技術政策能為雙方人民提供優惠及服務。 其中關於美歐未來在貿易與技術合作的具體執行事項,則交由TTC組成共十個工作小組以應對一系列的全球貿易、經濟和技術議題,包括:技術標準合作、供應鏈安全、氣候和綠色技術、ICT安全和競爭力、資料治理和技術平台、威脅安全和人權的技術濫用、出口管制、投資審查、全球貿易挑戰以及中小企業取得和利用數位技術。透過TTC能使美歐兩國政府與利害關係者進行密集且持續的接觸,確保TTC合作計畫的成果能促進雙方經濟高度成長。 此外,TTC合作與交流不影響雙方各自監管自主性,並應尊重雙方不同法律制度。TTC合作同時也應關注包括WTO等多邊機構協調及與理念相近夥伴間之合作,以促進數位及經濟治理之民主與永續典範。
強化驗證技術以遏止網路犯罪美國聯邦政府與企業界正朝向增加驗證技術的使用,以遏止線上詐騙的盛行,所謂「雙重驗證( ”two-factor” Authentication)」機制,為美國聯邦財政機構檢測委員會(Federal Financial Institutions Examination Council, FFIEC )與美國芝加哥直銷協會( The Direct Marketing Association, DMA )推行,主要要求檢查除用戶名稱和密碼以外的東西來確認顧客的身份。 美國聯邦財政機構檢測委員會 —包括聯邦儲備(Federal Reserve)和聯邦存款保險公司(Federal Deposit Insurance Corp.,FDIC)等管理者在內,要求銀行2006年底皆必須加強網上身份驗證措施,如給每個顧客一份加密的憑證,這些憑證會向銀行證明用戶的真實身份。且該加密的憑證不會向發放該憑證的其它網站做出回應,這樣既保護了用戶,也保護了銀行。此外,美國聯邦財政機構檢測委員會審查員亦會定期檢查銀行的執行情況;而以美國芝加哥直銷協會為例,其要求會員於交易時所使用之電子郵件,須取得電子郵件系統的驗證,以確保電子郵件係由該協會成員所發出。 如同美國芝加哥直銷協會執行長 John A. Greco 所言,消費者可藉由此種驗證方式增加更多信心,對於其所取的資訊係來自可靠來源並具有合法性,可使市場減低網路犯罪之產生並對於政府、企業及消費者有更多保障。
因網路詐欺受騙的銀行儲戶控告銀行美國佛羅里達州一名商人日常透過網路管理其帳戶資金出入,其資金主要是在美國與中南美洲間流動。該名商人發現其銀行帳戶有異常的資金流向拉脫維亞而向警方報案,經調查發現他的電腦被植入名為Coreflood的特洛伊木馬程式,致其銀行帳戶存取密碼被盜用。該名商人認為銀行明知網路上有此種危險而怠於告知客戶,且銀行明知拉脫維亞以網路犯罪猖獗而著稱,對於其帳戶內大筆的異常資金流出亦疏於防範,爰對銀行提起訴訟。據信,本案為銀行儲戶因受網路詐欺而控告其銀行的首例。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。