為確保歐洲民眾於健康醫療方面之利益,歐洲製藥工業協會聯合會(European Federal Pharnaceutical Industrial Association;簡稱EFPIA)於2009年2月17日,向歐洲議會(European Parliament)提出建議,並敦促其應儘速通過歐盟執委會(European Commission)於去年年底所提出一項關於醫藥品安全、創新與易近用性之議案。而一位業界代表Günter Verheugen於當(17)日會面後指出:「此次會面,主要是希望能就新近執委會所提交之醫藥品管理整體配套方案(Pharmaceutical Package),進行初步意見之交換與討論」。
由於保障歐盟境內民眾之健康安全,實乃歐盟決策者(Decision-makers)所應掮負之重要責任,故EFPIA總幹事Brian Ager於此次會面交流之前,亦曾高聲向歐洲議會與各會員國家呼籲,應優先將病患安全(Patient Safety)議題納入考量,並採取果斷之行動;同時,其也指明,歐洲醫藥各界為尋求各種可能落實之方法,先前早已經歷過各個階段,並遲延了決策做成之時機;故,此次會面,除要為執委會提案之審查,奠定啟動之基外,亦盼能再次集聚並挹注歐洲醫藥各界之能量,於保護歐洲人民健康安全相關之行動當中。
關於歐盟執委會於去(2008)年底所提出之議案,由於其中有多項內容對歐洲醫藥各界之影響實廣且深;因此,該項提案目前業已廣泛地受到EFPIA與業者之重視。此外,就此項醫藥品管理整體配套方案中擬採行之具體立法規範措施,實包含如後3個面向:首先,是欲透過規範擬提昇藥物警戒(Pharmacovigilance)方法之現代化;其次,強化管制規範以減少假藥滲入歐洲整體醫藥品供應鏈之機會;最後,則是要要提供高品質之健康與醫藥品相關資訊給有需要之病患或大眾近用(Access)等。
由此可知,未來歐盟整體醫藥品管理立法方向,將分由3個不同之角度出發;並同時朝「改善歐洲大眾用藥安全」之目標前進;不過,在進一步進行條文化之前,前述由執委會所提出之醫藥品管理整體配套方案,將會先交由歐洲議會與歐盟理事會官員共同進行初步之討論。
本文為「經濟部產業技術司科技專案成果」
藥品監管機構負責人組織(Heads of Medicines Agencies, HMA)與歐洲藥品管理局(European Medicines Agency, EMA)聯合巨量資料指導小組(HMA-EMA joint Big Data Steering Group, BDSG)於2021年8月27日發布「巨量資料指導小組2021-2023年工作計畫」(Big Data Steering Group Workplan 2021-2023),將採以患者為焦點(patient-focused)之方法,將巨量資料整合至公衛、藥物開發與監管方法中,以提高巨量資料於監管中之效用。指導小組將利用「資料分析和真實世界訊問網路」(Data Analysis and Real World Interrogation Network, DARWIN EU)作為將真實世界資料整合至監管工作之關鍵手段; DARWIN EU諮詢委員會(Advisory Board)已於2021年建立,DARWIN EU協調中心(Coordination Centre)亦將於2022年初開始運作。 為確保資料品質與代表性,未來工作計畫將與「邁向歐洲健康資料空間–TEHDAS」(Towards A European Health Data Space – TEHDAS)合作,關注資料品質之技術與科學層面,並將於2022年提出第一版「歐洲監管網路資料品質框架」(data quality framework for the EU Regulatory Network)、「真實世界資料來源選擇標準」(criteria for the selection of RWD sources)、「詮釋資料優良規範指引」(metadata good practice guide)、「歐盟真實世界資料公用目錄」(public catalogue of European RWD)等規範。 此外,工作計畫將於2021年底舉辦「學習計劃」(learnings initiative)研討會,討論包括EMA人用藥品委員會(Committee for Medicinal Products for Human Use, CHMP)對於真實世界證據於藥品上市許可申請(Marketing Authorization Application, MAA)、適應症擴張(extensions of indications)之審查,以及過去真實世界資料分析試點於委員會之決策等議題,以利後續指引之修正。 最後,工作計畫預計於2021年底完成「健康照護資料二次使用之資料保護問與答文件」(question and answer document on data protection in the context of secondary use of healthcare data),以指導利益相關者與促進公共衛生研究,並發布由歐盟監管網路(EU Regulatory Network)同意之對於藥品監管(包括巨量資料)之資料標準化戰略。
歐盟倡議「邁向資料經濟時代」政策,規劃巨量資料Big Data發展策略2014年7月歐盟執委會針對巨量資料規劃新的政策,提出「邁向資料經濟時代」(Towards a thriving data-driven economy)政策,對研究發展帶來激勵,創造更多的商業機會。先前在2010年至2015年巨量資料科技與服務市場觀察報告中,指出預期巨量資料科技複合成長率為40%。從這些國際趨勢觀察,智慧聯網與巨量資料涉及的領域包括健康、食品安全、氣候與能源資源、智慧運輸系統以及智慧城市等,而這些都是當前歐洲無法忽略的問題。因此,此政策中指出應支持重點資料來促進公共服務與市民生活的競爭力與品質,廣泛分享使用並發展公開資料資料以及研究資料、確認相關的法律架構與政策屬有利發展、利用政府採購將資料科技帶入市場等項重點,以促成資料驅動經濟的全球化發展。 歐盟指委會並指出,推動巨量資料政策的施行尚仰賴於其他的行動計畫以及各個會員國之間的合作 。而在資料蒐集與利用逐漸擴張的情形下,歐盟執委會更於2014年7月2日發出聲明,要求各國政府應重視巨量資料帶來的問題,並且指出在巨量資料的公共諮詢中,有主要四個問題: (1)缺乏跨境的合作(2)未具有充分設施以及資金資助機會(3)缺乏資料專家以及相關技術(4)法規範過於零散且複雜。因此,歐盟執委會提出以下幾點,有助於問題的解決: 1. 透過公私營合作制度資助巨量資料發展,特別是在個人醫療領域上的應用。 2. 在Horizon 2020架構下,設立巨量資料中心,將以資料為基礎,將之與雲端使用構成供給鏈,藉此幫助中小企業。 3. 當透過智慧聯網,及機器與機器間通訊取得資料時,應針對資料所有權以及責任規範建立新的準則。 4. 建構資料標準,找出潛在的缺漏。 5. 建立一系列超級運算中心,增加歐洲資料專家。 6. 在不同會員國建立資料處理設施之聯結網絡 。 歐盟執委會希望能於上述各項政策推動下,共同建立有助資料經濟發展基礎架構及環境,並鼓勵產業界共同投入巨量資料的應用發展。
英國提出因應GDPR自動化決策與資料剖析規定之細部指導文件2018年5月,英國資訊專員辦公室(Information Commissioner’s Office, ICO)針對歐盟GDPR有關資料自動化決策與資料剖析之規定,公布了細部指導文件(detailed guidance on automated decision-making and profiling),供企業、組織參考。 在人工智慧與大數據分析潮流下,越來越多企業、組織透過完全自動化方式,廣泛蒐集個人資料並進行剖析,預測個人偏好或做出決策,使個人難以察覺或期待。為確保個人權利和自由,GDPR第22條規定資料當事人應有權免受會產生法律或相類重大效果的單純自動化處理決策(a decision based solely on automated processing)之影響,包括對個人的資料剖析(profiling),僅得於三種例外情況下進行單純自動化決策: 為簽訂或履行契約所必要; 歐盟或會員國法律所授權; 基於個人明示同意。 英國2018年新通過之資料保護法(Data Protection Act 2018)亦配合GDPR第22條規定,制定相應國內規範,改變1998年資料保護法原則上容許資料自動化決策而僅於重大影響時通知當事人之規定。 根據指導文件,企業、組織為因應GDPR而需特別留意或做出改變的事項有: 記錄資料處理活動,以幫助確認資料處理是否符合GDPR第22(1)條單純自動化決策之定義。 倘資料處理涉及資料剖析或重大自動化決策,應進行資料保護影響評估(Data Protection Impact Assessment, DPIA),判斷是否有GDPR第22條之適用,並及早了解相關風險以便因應處理。 提供給資料當事人的隱私權資訊(privacy information),必須包含自動化決策之資訊。 應確保組織有相關程序能接受資料當事人的申訴或異議,並有獨立審查機制。 指導文件並解釋所謂「單純自動化決策」、「資料剖析」、「有法律效果或相類重大影響」之意義,另就可進行單純自動化決策的三種例外情況簡單舉例。此外,縱使符合例外情況得進行單純自動化決策,資料控制者(data controller)仍必須提供重要資訊(meaningful information)給資料當事人,包括使用個人資料與自動化決策邏輯上的關聯性、對資料當事人可能產生的結果。指導文件亦針對如何向資料當事人解釋自動化決策處理及提供資訊較佳的方式舉例說明。