美國專利商標局再審結果,將影響Motorola 與Aruba Networks間的專利侵權訴訟結果

  美商Motorola 公司(下稱MOT) 旗下Symbol Technologies, Inc.及Wireless Valley Communications, Inc.公司於2007年8月27日在美國德拉瓦州(Delaware)地方法院對美商Aruba Networks公司(下稱ARUN)提起專利侵權訴訟,指出ARUN侵害他們的無線區域網路連結技術(WLAN)等四項專利,並向法院申請永久禁制令及金錢上的損害賠償。

 

  2008年9月,ARUN向法院申請反訴並向美國專利商標局(USPTO)對上開四項專利申請再審,指出MOT所據以主張的專利權申請日晚於ARUN之現有技術(Prior Arts)實施日。

 

  今(2009)年2月,美國專利商標局已陸續對於ARUN所提的再審核發初審報告。其中,US Patent No.6625454中12/14說明項被認定為無效;US Patent Nos.6973622, 7173922之再審初審報告指出全部說明項都被認定為無效;目前還有1件ARUN申請的專利再審案在審查中,而根據MOT於法院上的陳述,美國專利商標局所受理的再審專利案件中,也多將原專利權認定為無效或變更。 ARUN所提的再審結果雖然尚未確定,但多數分析師認為再審結果多有利於ARUN。待再審結果確認後將會影響MOT v ARUN的訴訟結果,對於損害賠償判定也會有重大影響 。

相關連結
※ 美國專利商標局再審結果,將影響Motorola 與Aruba Networks間的專利侵權訴訟結果, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3011&no=66&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
日本2021年修正《個人資料保護法》,整合個資法體系

  日本於2021年5月19日公布新修正之《個人資料保護法》(個人情報の保護に関する法律),並預計於2022年4月正式施行。修法重點如下: 一、法律形式及法律管轄一元化:現行日本個人資料保護法制依適用對象分為《個人資料保護法》、《行政機關個人資料保護法》(法律行政機関の保有する個人情報の保護に関する法律)、《獨立行政法人等個人資料保護法》(独立行政法人等の保有する個人情報の保護に関する法律)及各地方政府個人資料保護條例等不同規範,修法後將統一適用《個人資料保護法》,並受到個人資料保護委員會之監督管理。 二、整合醫療及學術領域之規範:目前醫療及學術機構因隸屬於公部門或私部門適用不同規範,修法後無論公私立醫院、大學等原則上均適用相同規範。 三、調整學術研究之豁免規定:基於學術研究自由為憲法保障之基本權,現行《個人資料保護法》明文規定學術研究一律排除適用本法規定,惟2019年日本取得《歐盟一般資料保護規則》(GDPR)適足性認定之範圍未包含學術研究,故修法調整豁免規定為例外情形排除適用,如變更利用目的、取得敏感性個人資料及提供予第三者之情形。 四、整合個人資料及匿名化資料之定義:修法將公部門與私部門對個人資料之定義,整合為包含「易於」與其他資料比對後得以識別特定個人之要件。而《行政機關個人資料保護法》所稱「去識別化資料」(非識別加工情報),與《個人資料保護法》所稱「匿名化資料」(匿名加工情報),修法後將統一稱為「匿名化資料」。   為銜接上述修法內容,日本個人資料保護委員會自2021年8月起陸續針對《個人資料保護法施行令》、《個人資料保護法施行規則》及個人資料保護法相關指引公開徵求意見,後續值得持續觀察日本個人資料保護法制發展。

日本發布資料素養指南之資料處理篇,旨在促使企業理解便於活用於數位技術與服務的資料管理方法

日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料處理篇,主要為促使企業理解有利活用於數位技術與服務的資料管理方法。 《指南》資料處理篇指出,資料的生命週期涵蓋資料設計、資料蒐集、外部資料連動、資料整合、資料處理、資料提供、資料累積以及資料銷毀等不同階段。《指南》建議在資料生命週期的各階段,盡可能的不要有人類的介入。舉例而言,資料蒐集可以透過感測器或系統進行。該建議的目的在於,人類介入資料生命週期,僅會引起輸入錯誤或是操作錯誤等風險。 此外,《指南》亦於資料處理篇中針對資料治理給出四點建議,分別如下: (一)資料是企業的重要資產,因此應重視其管理方式。管理方式涵蓋帳號密碼、透過生物辨識技術進行資料接觸管理、Log檔之取得、系統設定禁止使用USB等方式。 (二)資料治理的重點在於對人政策。除了向員工強調不要開啟不明網站及釣魚信件以外,企業亦應與員工建立堅實的信賴關係。 (三)資料公開或流通時應注意,如果不希望提供後的資料被二次利用,應於雙方間的資料利用契約中敘明。此外,由於資料具備易於複製及傳輸的特性,因此在公開或流通資料時,應考量適用諸如時戳技術等可確保資料原本性或使資料無法被竄改的數位技術。 (四)資料銷毀如果僅是單純的刪除資料,有透過數位技術找回資料的可能性。因此,除可評估委由專門進行資料銷毀服務的公司協助以外,由於銷毀資料經由個人電腦外洩之事件時有所聞,故亦應留意個人電腦之資料管理。 我國企業如欲將資料活用於數位技術或服務,除可參考日本所發布之《指南》資料處理篇以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,以建立自身資料處理流程,進而強化資料管理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

因應虛擬貨幣發展,日本內閣通過修法草案,允許創投基金得持有加密資產

日本經濟產業省(METI)2024年2月16日於官網公布,內閣已審議通過《產業競爭力強化法》(Act on Strengthening Industrial Competitiveness)、《投資事業有限合夥契約法》(Limited Partnership Act for Investment, LPS法)等法律修正案。修法目標係為驅動企業投資新創、促進新創事業發展,其中允許創業投資基金(Venture Capital Fund, VC)得持有加密資產(crypto assets)即為本次修法亮點之一。 根據本次《投資事業有限合夥契約法》修正案,加密資產將被增列到「投資事業有限合夥」(Investment limited partnership, Investment LPS)得收購和持有的資產清單中。實務上日本創投基金多依《投資事業有限合夥契約法》規定,採投資事業有限合夥之組織型態存在。故若修正案最終能落實,將使新創事業得以透過向創業投資基金發行加密資產之方式進行籌資,可以大幅提高「加密貨幣與區塊鏈領域」之Web3新創獲得國內創業投資基金投資的機會,有助於日本建立更強大的區塊鏈技術(Blockchain Technology)和去中心化金融(decentralized finance, DeFi)市場。 日本本次修法,同時兼顧保護投資者利益與金融創新,頗值得我國借鏡。我國金管會雖已相繼公布「虛擬通貨平台及交易業務事業防制洗錢及打擊資恐辦法」以及「管理虛擬資產平台及交易業務事業(VASP)指導原則」,惟相關規範尚未完成細節。金管會主委今年初(2024年1月30日)表示,將朝設置專法強化投資人保障及管理之方向進行委外研究,草案預計今年9月出爐。面對區塊鏈技術暨加密資產快速發展帶來的監理挑戰,我國應持續積極關注國際組織及各國主管機關之監理發展方向,以研擬合適之法制規範。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP