2009年02月17日美國總統簽署通過「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, ARRA),將醫療產業列為重點發展項目之ㄧ,擬由政府預算進行醫療資訊科技化計畫,俾使電子病歷的傳輸與交換得兼顧效率及安全。而以規範醫療資訊安全為主的「醫療保險可攜及責任法」之隱私權條款(HIPAA, Privacy Rule),亦因此有重大修正。
其中,最主要的變革在於擴充HIPAA的責任主體,由原有的健康照護業者、健康計畫業者及健康照護資訊交換業者,擴充至凡因業務關係而可能接觸個人健康資訊的個人或業者,包含藥劑給付管理公司、代理人及保險業者等,這些機構或個人原本與醫療院所或病患間係依據契約關係進行責任規範,但被納入HIPAA的責任主體範圍後,則需依此負擔民、刑事責任。
而於加強資訊自主權部份,亦有數個重要變革如下:(一)責任主體之通知義務:依據新規定,資料未經授權被取得、使用或揭露,或有受侵害之虞時,責任主體應即早以適切管道通知資訊主體有關被害之情事,以防備後續可能發生的損害。(二)資訊主體之紀錄調閱權:以往資料保管單位得拒絕個人調閱健康資料運用紀錄之請求,有鑒於病歷電子化後,保存及揭露相關紀錄已不會造成過重負擔;依據新規定,資訊主體有權調閱近三年內個人健康資料被使用次數及目的等紀錄。(三)資訊主體資料揭露之拒絕權:以往責任主體得逕行提供個人醫療資訊作為治療、計費及照護相關目的之使用,無論資訊主體曾表達拒絕之意與否;依據新規定,資訊主體得禁止其向保險人揭露相關資訊,除非保險人已全額支付醫療費用。
以上HIPAA之新增規範,預計於2010年02月17日正式施行。
本文為「經濟部產業技術司科技專案成果」
美國知名研究機構雷克斯研究公司 ,九月底 應經濟部邀請,在國際招商論壇上,以「奈米科技的創新與創投」為題,發表專題演講。其副總裁挪登馬修( Matthew M.Nordan )指出,奈米科技的重要性,在於其未來將應用到各個產業上,改變各個產業原有風貌。從創投業者立場,所選擇投資對象,是要能以奈米科技來促進原有產品功能,或能大幅降低原有產品成本。此外,如何避開專利地雷,亦將是各企業在投入奈米科技時,必須正視的問題。 挪登表示,二○○三年全球在奈米科技的相關研究經費約為八十六億美元,其中只有二億美元來自於創投基金,創投業界對奈米科技的投入如此保守,除受到網路經濟泡沫衝擊,主要是因為奈米科技的商品化,還有一段很長的路要走,加上創投業者多半對材料工業比較陌生,業界過去又傳出多起投資失敗的案例,均讓創投業者不敢對奈米科技有大手筆投入。相對於創投業者的保守態度 , 如何判斷優質的奈米科技投資案更形重要 。 其表示,除企業必須提出如何能避開國際已有的「專利地雷」,或取得國際專利的交互授權外,更重要的是,投資人必須瞭解,奈米科技的應用,並不是要開發出一個全新的「奈米產品」,或者應用奈米科技就能帶來超額的利潤,而是能對現存產業,帶來功效的提升或成本的降低。
歐盟發布《歐洲資料治理規則》草案歐盟執委會於2020年11月25日公布「歐洲資料治理規則」(Proposal for a Regulation on European data governance (Data Governance Act))草案。本立法草案係延續同年2月發布「歐洲資料戰略」(European data strategy)所提出之立法規劃,針對該戰略所揭示的資料治理政策願景,於制度面予以明文化。而本草案亦為該戰略發布後,首次提出的具體性措施。其制定的主要目的,在於透過強化資料中介機構(data intermediaries)的公信力、以及優化歐盟整體的資料共享機制,來提升資料的可取得性(availability)。 依草案條文內容,其主要立法面向如下: (1)界定本法的立法目的,在於規範歐盟內部再利用公部門所持有之特定類型資料的條件,確立資料共享服務的通報與監督框架,並針對基於利他(altruistic)目的蒐集處理資料之實體(entities),建構自願註冊的制度;另一方面則進行本法的名詞定義。 (2)公部門資料再利用機制:整體性規範由公部門所持有、但涉及商業機密、智慧財產權、個資等之資料再利用的一致性標準。其以保護既有的營業秘密、個資、智財權等為前提,確立該些資料再利用的標準作法(如原則以非專屬形式再利用、可收取合理費用)。有意再利用上述資料的公部門,應於技術面保護其隱私與機密性。 (3)針對資料共享服務供應商的通報機制:要求提供資料共享服務的供應商,於正式對外提供其服務前,應先向各成員國的權責機關通報其業務,藉以增加外界對共享個資與非個資之資料機制的信賴度,同時降低資料共享的交易成本。同時,資料共享服務供應商於資料交換應保持中立,不能為其他目的使用資料;其共享服務應以開放及協作的方式進行,並優化自然人或法人查閱與控制其資料的環境,藉以強化個資自主權。 (4)資料利他主義(data altruism)的明文化:定義非營利、具普遍性共同目標之組織,得向歐盟註冊成為資料利他主義組織。透過此認證制度,增加組織公信力,以推動個人或公司出於公共利益,自願提供資料。同時,授權歐盟執委會可制定通用之歐洲資料利他主義同意書(European data altruism consent form),減少個別收集資料使用同意書之成本。 (5)成員國資料共享權責機關之職責:其應公正、透明、一致、及時履行其職責,監督與實施資料共享服務供應商與資料利他主義組織的通報與註冊機制。例如,其有權要求資料共享服務供應商提交必要訊息,以確保其作為是否符合本法要求。同時,權責機關成員不得為資料共享服務的供應商。 (6)歐洲資料創新委員會(European Data Innovation Board):此為一專家小組之設置要求,負責協助成員國權責機關之作法,遵循資料治理法所訂標準。
美國競業禁止條款之修法趨勢及對離職員工之管理建議美國聯邦貿易委員會(The Federal Trade Commission, FTC)於2023年1月5日提出聯邦規則彙編(Code of Federal Regulations, CFR)之修正草案,其基於競業禁止條款(Non-Compete Clauses)將阻止員工離職及員工之競爭、降低員工的薪資、阻止新企業之形成及阻礙創新等立法目的,擬禁止僱用人及受僱人間約定競業禁止條款及使現有的競業禁止條款歸於無效。 美國亦有相關報導提到員工流動於技術領域尤為常見,因技術領域之企業對營業秘密高度重視,故對於員工離職到競爭對手會特別留意,例如加州的許多企業(尤其是位於矽谷之企業)會與員工簽署保密合約規範對於機密資訊的處理,部分合約甚至包含競業禁止條款以限制員工於離職後至競爭對手處工作,不論係保密合約或競業禁止條款,其目的均係延遲或避免員工於離職後帶走公司敏感資訊並將其用於對前僱主不利之用途。 聯邦規則之修正草案一旦通過,未來美國的企業將不得再以約定競業禁止條款之方式限制離職員工至競爭對手處工作,但企業仍可透過在員工離職前或離職後採取相關措施,盡早發現並降低離職員工竊取公司敏感資訊的風險,可採取的措施例如: 1.留意員工離職前是否有未經授權或為完成工作以外之目的複製或存取公司的資料之行為,意即,這些蒐集來的資訊是否將用於新公司的工作(如改良競爭對手的產品、擴大競爭對手的客群等); 2.對員工個人工作設備(如:公司提供之筆電及手機)或網路存取紀錄等進行調查,檢視是否有異常檔案存取紀錄或異常行為(例如是否突然大量刪除/複製檔案); 3.了解員工的離職原因及於離職後的規劃——可以了解員工未來可能從事的職業、就職的企業以調整離職前調查的程度; 4.留意員工於找到新雇主後是否仍持續使用公司的營業祕密——新雇主亦須留意的是,新進員工是否仍持續使用前公司的營業秘密,以避免公司被訴。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。