歐洲議會於2009年4月27日一讀通過GSM指令修正案(Directive 87/372/EEC),對開放900MHz 頻段(880~915MHz、925~960MHz)供UMTS/HSPA技術使用達成共識。
全球行動供應商協會GSA (Global mobile Suppliers Association)協會歡迎這項進展,宣稱行動寬頻系統HSPA應用於900MHz段將可為網路營運商帶來實質的效益。因為相較於目前多數3G系統使用的較高頻率2100MHz,UMTS系統使用900MHz頻段能讓網路營運商以更低的成本、更好的電波穿透率進行網路布建。
根據UMTS論壇,雖然在歐洲900MHz係保留給GSM系統使用,但UMTS900-HSPA系統之商業布建與運轉已經在如澳洲、愛沙尼亞、芬蘭、冰島,甚至泰國等國家開始進行。
瑞典是最近一個宣布將開放900MHz頻段供3G使用之國家。其主管機關PTS於2009年3月19日宣稱將在執照更新時,允許仍以本頻段提供GSM服務的營運商以新的科技提供新的行動寬頻服務。
本案預計於2009年5月6日進行表決。
經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
巴西政府公布個人數據保護法草案巴西政府於2015年1月28日公布個人資料保護法草案(Regulation Of The Brazilian Internet Act And Bill Of Law On Personal Data Protection),該草案適用於個人和通過自動化方式處理個人資料的公司,惟前提是(1)處理行為發生在巴西或(2)蒐集個人資料行為發生在巴西。該草案將強加規範企業處理其在巴西的個人資料,包括資料保護義務和要求: 一、企業必須使資料當事人能夠自由的、直接的,具體的使當事人知悉並取得人同意以處理個人資料。 二、除了在有限的例外情況下,禁止處理敏感個人資料。例如資料當事人已被告知處理敏感個人資料的相關風險,並有具體的同意。敏感的個人資料包括,種族和民族淵源,宗教,哲學或道德信仰,政治觀點,健康和性取向資料,以及遺傳數據。 三、資料外洩時有義務立即報告主管機關。 四、當個人資料是不完整,不準確或已經過期時,允許資料當事人查詢他們的個人資料並更正之。 五、不得提供個人資料給資料保護水平不相似的國家。 六、有義務依比例原則採取安全保障措施以處理個人數據,防止未經授權的訪問,破壞,丟失,篡改,通訊或傳播資料。
日本發布以人為本AI社會原則日本內閣於2018年6月15日決議組成跨部會之統合創新戰略推進會議,並於2019年3月29日發布AI戰略,其中的倫理面向為以人為本之AI社會原則(下稱AI社會原則),希冀藉有效安全的活用AI,推動「AI-Ready 社會」,以實現兼顧經濟發展與解決社會課題的「Society5.0」為最終目標。 為構築妥善應用人工智慧的社會,AI社會原則主張應尊重之價值理念如下: (一) 尊重人類尊嚴的社會:AI應作為能激發人類發揮多樣能力和創造力的工具。 (二) 多元性和包容性的社會(Diversity & Inclusion):開發運用AI以共創多元幸福社會。 (三) 永續性的社會(Sustainability):透過AI強化科技,以創造能持續解決社會差距與環境問題的社會。 而AI社會原則核心內容為: (一) 以人為本:AI使用不得違反憲法或國際保障之基本人權。 (二) AI知識(literacy)教育:提供必要的教育機會。 (三) 保護隱私:個人資料的流通及應用應妥適處理。 (四) 安全確保:把握風險與利益間之平衡,從整體提高社會安全性。 (五) 公平競爭確保:防止AI資源過度集中。 (六) 公平性、說明責任及透明性任。 (七) 創新:人才與研究皆須國際多樣化,並且建構產官學研AI合作平台。
美國最高法院在Bilski v. Kappos案中仍然留下對於商業模式的可專利性做下模糊的判決美國最高法院於2010年6月28日對Bilski v. Kappos案作出5比4的拉距判決。原告Bilski為一家能源產品公司,其就一種讓買家或賣家在能源產品價格波動時,可用來保護、防止損失或規避風險的方法申請商業方法專利(Business Method Patent)。但美國商標專利局審查人員以此發明只是一種解決數學問題,而為抽象而無實體呈現的想法為理由而拒絕。經該公司於專利上訴委員會上訴無效後,繼續上訴至聯邦巡迴法院與最高法院。 最高法院拒絕適用前審以美國專利法第101條(35 U.S.C. §101),創造發明是否為有用的、有形的及有體的結果作為認定方法專利的標準。而最高法院多數意見係採用「機械或轉換標準」(machine or transformation test)為專利法第101條可專利性之標準,認定如果創造發明的方法能與機械器具或配件相結合或轉換為另外一種物品或型態時,即認定此方法具可專利性。惟經法院適用此標準後,仍認定原告的商業方法不具可專利性。 一些批評認為,目前「方法」和「轉換」等關鍵字的定義還不清楚,而該判決並沒有澄清這些爭議,甚至帶來更多的疑惑。美國律師Steven J. Frank認為,雖然最高法院的意見放寬了可專利性的標準,但是並沒有提及認定可專利性的其他標準。 該判決亦未明確指出商業方法究竟要符合哪些實質要件,方具有可專利性。相當多的電子商務中所使用的「方法」都有專利,最有名的大概就是亞馬遜公司的「一鍵購買(one-click)」的網路訂購方法,還有Priceline公司「反向拍賣」(reverse auction)的方法等。許多電子商務、軟體及財務金融相關業者在這個判決之後,對於商業方法的可專利性也感到相當的困惑。如果有方法專利的存在,那麼擁有這些專利的公司就可以放心了;但是,如果方法沒有可專利性,那麼對於現在擁有方法專利的權利人不啻是一個很壞的消息。是否一些比較不抽象的方法就具有可專利性,而比較抽象的方法就專利性,判定的標準又在哪裡,對此,法院並沒有加以說明,在法院明訂出更明確的標準之前,目前仍留給美國商標專利局來判定。