歐洲議會呼籲尊重網路人權

  歐洲議會於2009年3月26日,以大多數支持Lambrinidis報告中關於網路上個人自由保護之投票結果,反對法國政府和著作權行業提出的修正案。歐洲議會的態度是「保障所有公民接近使用網路就如同保障所有公民接受教育」,而且「政府或私人組織不能以處罰之方式拒給這種接近使用的權利」。歐洲議會議員要求會員國政府需體認到網路是一個有效增加公民權利義務之特殊機會,就這方面而言,使用網路及網路內容是一個關鍵要素。

 

  這份報告被歐洲議會議員所採用,得以認識到提供安全措施來保護網路使用者(特別是孩童)之必要性,由於使用者可能會因使用網路,而暴露在成為罪犯或恐怖份子的犯罪工具的風險中。報告中提出方案對抗網路犯罪,但同時也要求在安全及網路使用者基本權利保障中尋求平衡點。 此報告否定法國所提之修正案,歐洲議會又再度否決由法國努力推動「網路侵權三振法案」(three strikes file-sharing law)。歐洲議會認為對於所有網路使用者的監測活動及對於侵權者之處罰有違比例原則。歐洲議會亦公開支持「網路權利憲章」(Internet Bill of Rights)以及推動「隱私權設計」(privacy by design)宗旨。

相關連結
※ 歐洲議會呼籲尊重網路人權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3052&no=57&tp=1 (最後瀏覽日:2026/01/11)
引註此篇文章
你可能還會想看
FCC對於頻譜管理與拍賣的法規修正

美國聯那通訊委員會 (Federal Communications Commission, FCC)在本月十四日公佈了一份有關「商業頻譜加強法案(Commercial Spectrum Enhancement Act, CSEA)」的執行命令與法規預訂修正通知(Declaratory Ruling and Notice of Proposed Rule Making)。希冀能制訂一定的行政規則而確切地遵照CSEA的規範;同時,FCC也在文件報告中也提出了一些對於目前競價拍賣規則的相關修正意見。   最初在 CSEA法案中設計了頻譜的拍賣收益機制,主要係補償聯邦機構在一些特定頻率(216-220 MHz, 1432-1435 MHz, 1710-1755 MHz, and 2385-2390 MHz)中,以及一些從聯邦專屬使用區重新定頻到非專用區的頻率,因移頻所支應出的必要成本。而在FCC的公佈報告中,委員會認為惟有定義清楚,方能有效地落實該法的執行。因此FCC詳細解釋說明了CSEA中對於「總體現金收益(total cash proceeds)」的意義,FCC認為所謂的總體現金收益應該是原始獲標的價格扣除掉任何有可能的折扣或扣損;同時,FCC也在預定修正公告中,認為應改變委員會的拍賣價格規定以配合CSEA的規定。另外,也修正了部落地的拍賣信用補償制度(Tribal Land Bidding Credit Rule)等規定。

日本醫藥品醫療器材等法修正研析―以醫療應用軟體為中心

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書

  世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。   包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。   在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。   綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

TOP