美國的無線地面電視於今(2009)年6月12日起關閉類比訊號,全面進行數位播送。聯邦通訊委員會(The Federal Communications Commission, FCC)預期政府雖已進行大規模宣傳,但仍有部分家庭尚未完成準備。依尼爾森(Nielsen)公司調查,至6月14日止,尚有兩百五十萬用戶無法接收數位電視訊號;此外,相較於全部家庭中僅2.2%未完成數位轉換的準備,非洲裔與西班牙裔家庭未完成的比例則分別達4.6%與3.6%。
目前美國多數家庭是收看付費的有線電視與衛星電視,數位轉換對此部分觀眾並無明顯影響,但仍有數百萬家庭收看免費的無線電視。在數位轉換後,舊型電視機須加裝數位轉換盒,方能接收數位訊號;對此,美國政府已發放優待券補助用戶購買轉換盒(至7月底為止)。FCC表示,部分家庭裝置轉換盒與電台改善傳輸訊號,尚須花費數週時間,而民眾利用FCC的協助專線進行諮詢時,最普遍的問題則是有關優待券方案與轉換盒的安裝。
此外,電視台原本擔心在數位轉換後,部分受影響的人口(特別是年輕觀眾)將可能不再觀看電視,而選擇利用網路收視電視節目。但尼爾森公司的調查指出,數位轉換後整體收視率僅有些微下滑,除了數位化外,亦可能是受到天氣較佳或重要運動賽事轉播較少等因素影響。
今(2010)年3月,歐盟委員會正式批准Amflora基因改造馬鈴薯商業種植,此舉係歐盟自1998年以來首次核准種植的基因改造作物。 歐盟委員會內的消費者健康及安全政策部門代表John Dalli表示,經過徹底的科學分析與相關安全檢驗後,將排除與解答對於此一基因改造馬鈴薯之疑慮,因此並無不予核准之正當理由。再者,本次所核准的範圍係Amflora馬鈴薯經處理過後作為穀物飼料之用,將不會提供作為人類食品使用。此外,未來歐盟委員會將決定進口使用基因改造玉米品種與其製成之食品及飼料產品等,這將涉及多種歐盟委員會先前所核准的基因改造玉米品種,如MON810、MON863及NK603等。 但事實上,各界仍對於本次核准的Amflora馬鈴薯與其他三項基因改造玉米的標記基因存有抗藥性的疑慮與爭議,針對於此,去(2009)年6月間,歐盟食品安全管理局(European Food Safety Authority,簡稱EFSA)內的科學小組已再次進行安全檢驗,最後指出,以目前科技水準得出結論,基因改造作物中的標記基因不會對人體健康或是生態環境帶來負面影響。 為能解決批准基因改造作物商業化種植的問題,歐盟委員會考量將進一步規劃如何在決定種植基因改造作物的過程中強化各會員國的決定權,歡迎各界就此提出建議與發表意見,期望由消費者健康及安全政策部門提出一項具備共通性與科學證據基礎的決策過程,以供各會員國於過程中充分反映其立場,並自行決定是否將核准基因改造作物於境內的商業化種植。
日本發布網路安全相關法令問答集日本國家網路安全中心(内閣サイバーセキュリティセンター,或稱National Information Security Center, NISC)於2020年3月2日發布「網路安全相關法令問答集」(サイバーセキュリティ関係法令Q&Aハンドブック),以回應日本內閣在2017年7月27日通過的「網路安全戰略」(サイバーセキュリティ戦略)中所提及應整理相關法制,以利企業實施網路安全措施與對策之決定。因此,內閣網路安全戰略本部(サイバーセキュリティ戦略本部)普及啟發‧人才培育專門調查會(普及啓発・人材育成専門調査会)於同年10月10日成立工作小組,針對網路安全相關法令進行推動與調查工作。 本問答集內容涉及13項法律議題,包括議題如下: 說明網路安全基本法(サイバーセキュリティ基本法)網路安全之定義與概要; 以公司法為核心,從經營體制觀點說明董事義務,例如建立內部控制機制,以確保系統審核與資料揭露之適當性; 以個人資料保護法為核心,例如說明個人資料的安全管理措施; 以公平交易法(不正競争防止法)為核心,說明在營業秘密的保護範圍內,利用提供特定資料與技術手段,來實施迴避行為係屬無效; 以勞動法規為核心,說明企業採取網路安全措施之組織與人為對策; 以資通訊網路、電信業者等為中心,說明IoT相關法律問題; 以契約關係為中心,說明電子簽章、資料交易、系統開發、雲端應用服務等議題; 網路安全相關證照制度,例如資訊處理安全確保支援人員; 說明其他網路安全議題,例如逆向工程、加密、訊息共享等; 說明發生網路安全相關事故之因應措施,例如數位鑑識; 說明當網路安全糾紛有涉民事訴訟時應注意之程序; 說明涉及網路安全之刑法規範; 描述日本企業在實施網路安全措施時,應注意之相關國際規範,例如歐盟一般資料保護規則(General Data Protection Regulation, GDPR)與資料在地化(Data Localization)等議題。 此外,隨著網路與現實空間的融合,各產業發展全球化,相關法規也日益增加,惟網路安全相關法規,在原無網路安全概念與相關法制的日本法上,卻鮮少有較為系統化的概括性彙編與解釋文件。因而盤點並釐清網路安全相關法令則成為首要任務,故研究小組著手進行調查研究,並將調查結果—「網路安全法律調查結果」(サイバーセキュリティ関係法令・ガイドライン調査結果)與「第四次關鍵基礎設施資訊安全措施行動計畫摘要表」(重要インフラの情報セキュリティ対策に係る第4次行動計画)作為本問答集之附錄文件以資參酌。最後,NISC期待透過本問答集,可作為企業實施具體網路安全對策之實務參考。
新國際協定針對未經請求之行銷電話或電子訊息展開聯合行動加拿大隱私專員於2016年6月14日表示,制定支持全球電信監管機構和消費者保護機構,針對垃圾郵件和行銷騷擾電話之跨境共同合作協議。 倫敦行動計畫(London Action Plan)備忘錄(MOU)之簽署國,現已可針對打擊跨國界或逾各個國家監管部門範圍之犯罪從事者的執法行動,相互分享資訊和情報,以獲取協助。 包括加拿大隱私專員辦公室(OPC)在內,目前既已簽署方分別為:澳大利亞通訊及傳媒管理局;加拿大廣播電視和電信委員會、韓國訊息安全局(KISA)、荷蘭消費者和市場監管局(ACM)、英國資訊委員辦公室及公民諮詢局、紐西蘭內政部、南非國家消費者委員會、美國聯邦貿易委員會和聯邦通訊傳播委員會。其他國家之政府當局亦表示願提交備忘錄,以及將來可能加入之意願。 對於加拿大隱私專員辦公室而言,這項協議將有助於達成加拿大反垃圾郵件法(CASL)關於電子郵件地址蒐集和間諜軟體之調查義務與責任,並與具有相同任務之夥伴機構間,進行偵查技巧及策略之分享。 加拿大隱私專員辦公室致力於和國內及國際夥伴合作,並已與國內之CASL執法合作夥伴及其他許多國家的隱私保護機構簽訂協議。
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。