商標權人的好消息—歐盟法院判決巴黎萊雅(L’Oreal)勝訴

  歐盟法院(European Court of Justice; 簡稱ECJ)於2009年6月18日判決,確認法國化妝品公司- 巴黎萊雅(L’Oreal SA)之競爭廠商-Bellure NV(簡稱Bellure公司) 有侵害巴黎萊雅之商標權,此一判決對於刻意仿冒之廠商予以重擊,也更擴大著名商標權人的商標保護範圍。

 

  Bellure公司所販售及製造的香水,係仿似巴黎萊雅所製造香水的味道、瓶身及包裝,且更以”smell-a-like”的商品價格比較表做為廣告宣傳,藉由「搭便車」的方式推銷Bellure之產品。

 

  歐盟法院認為,縱使Bellure的廣告宣傳及產品本身,並未直接和巴黎萊雅的產品產生商標混淆誤認的可能,且並未對巴黎萊雅造成直接的損害,但Bellure如此「搭便車」行銷自己產品的方式,確實是以不正當的廣告方式獲取不公平的利益,並銷售自已的產品。

 

  本案將使商標權人對於日漸複雜的侵害類型獲得保障,如:仿冒品的販售及網路銷售等;此外,對於產品在做宣傳時也要小心使用比較性的文字(如:僅做產品性質差異的比對而非產品價格的比對),以免侵害他人商標權。

相關連結
※ 商標權人的好消息—歐盟法院判決巴黎萊雅(L’Oreal)勝訴, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3089&no=57&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
英國ISP業者主動揭露網路速度資訊

  2011年5月英國電信主管機關Ofcom(Office of communications)對英國境內寬頻網路速率現況進行調查,寬頻網路平均下載速度從去年11月的6.2Mbits/s增為6.8Mbits/s,且有近半(47%)的使用者可享受到超過10Mbit/s的速度。   但廣告速度與真實速度間的差距擴大,今年5月業者平均廣告速度為15Mbit/s,,較真實速度6.8Mbits/s差距為8.2Mbit/s,而2010年11月平均廣告速度13.8Mbit/s真實速度6.2Mbit/s,差距為7.6Mbit/s。上述的差距主要發生於ADSL網路,英國有近75%的使用者仍用ADSL,此種傳輸方式將受到距離、纜線品質的影響。因此大多數業者所宣稱的20Mbit/s下載速度,僅能達到6.6 Mbit/s。有超過1/3的使用者速度為4 Mbit/s或更低。   F英國今年7月正式實施之寬頻速度自律規則(Voluntary Code of Practice on Broadband Speeds),為業者自願加入。除提供消費者「典型的速度範圍」(Typical Speed Range, TSR)資訊外,若消費者可使用速度小於業者宣稱之速度範圍,且業者無法解決問題時,在3個月內使用者可更換其他業者而無須罰款。目前已有BT、O2、Virgin Media等17家ISP業者加入自律規則中。

歐盟對中小型生技公司提供藥政管理之費用優惠及專業協助

  中小型公司是生技產業發展的主力,然藥物研究發展模式風險及資金需求甚高,對資金不豐沛的中小型公司來說,無疑是一大負擔,因此,各國政府於促進生技醫藥產業發展之同時,相當重視如何減輕這些生技製藥公司的營運壓力,進而協助其順利茁壯。   現今歐盟境內至少有1500家中小型生技公司,為減輕這類研發導向的中小型製藥公司之財務負擔,並提供一些藥政管理上的專門協助,歐盟於去2005年12月15日通過了〝歐盟醫藥品管理局協助中小型公司發展規則(COMMISSION REGULATION (EC) No 2049/2005 laying down, pursuant to Regulation (EC) No 726/2004 of the European Parliament and of the Council, rules regarding the payment of fees to, and the receipt of administrative assistance from, the European Medicines Agency by micro, small and medium-sized enterprises,以下簡稱本規則)〞。   本規則主要是希望EMA(European Medicines Agency, 即歐盟醫藥品管理局)能透過相關規費之減免及提供科學諮詢的方式,降低中小型公司新藥上市申請費用(一般而言,人類用新藥於歐盟上市需支付14 萬歐元的申請費用),進而促進技術創新及新藥研發。另為協助中小型公司能更快速及方便地利用到這些優惠,本規則特要求EMA應於其內部建立〝中小企業辦公室(SME Office)〞,並製作詳細之使用者手冊(User Guide)供中小型公司參考。   台灣大部分的生技製藥公司亦屬中小型,故政府應思考如何幫助這些公司成長茁壯。雖然我國對生技製藥產業相關已提供投資抵減優惠,但卻無特別針對中小型生技製藥公司的藥政管理法規,歐盟前述立法及其精神值得我國借鏡。

哥本哈根會議後,歐盟討論實行碳關稅的可能

  聯合國於哥本哈根舉行之氣候變遷綱要公約(UNFCCC)第15次締約國會議(COP15)會議後,對於較未有嚴格的管制工廠分布與二氧化碳排放(此情形又稱之為碳洩漏風險,risk of carbon leakage)的國家,由於該些國家的貨品進入,將對歐盟境內工業造成不公平競爭(unfair competition)結果,歐盟因而就如何保護會員國內工業生產者的措施進行討論。   近來像中國等未有過多法律規範以落實減少碳排放的國家,爲抵制此類國家貨品的進口影響歐盟境內工業生產者,歐盟正重新審視討論法國所提出的對進口至歐盟的貨品實施碳關稅(carbon tariff)的政策。   法國總統薩科奇曾表示,對於不尊重京都議定書(Kyoto Protocol)的國家,歐盟應對其進口產品課徵碳關稅,以保護歐盟境內因執行碳排放交易機制(Emission Trading Scheme, ETS)而必須額外負擔成本之工業生產者經濟利益,並消除國外貨品進口所導致的不公平競爭。   碳關稅在歐盟之實行,非只有法國提出,其實早在哥本哈根會議之前,法國與德國即共同向聯合國秘書長潘基文以書面(joint letter)表達於歐盟實施稅捐調整機制(border-adjustment measure)的想法,以抵制其他未落實國際環境保護規範國家。   今年(2010)三月,歐盟機構重新對於法國所提出的碳關稅進行討論,由於此措施將影響WTO對關稅之調降,身為歐盟最大工業國的德國,基於保護國內工業生產者,仍對碳關稅政策表示支持,惟WTO所制定的關稅相關規定,身為WTO會員國的德國也認為應遵循,以避免引起損失更大的貿易爭端。   在強調綠色經濟的時代,各國要作的不只是落實國際環保規範,對於國內業者的利益也應適當關注。現今歐盟刻正討論的碳關稅,因我國非為京都議定書締約國,一旦實施對我國衝擊不小,所以此政策發展值得我們持續觀察。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP