歐盟發布與食品接觸的容器材料安全評估規則

  歐盟食品安全局(European Food Safety Authority, EFSA)於2009年5月29日發布歐盟第450/2009號規則(Regulation EC No. 450/2009),內容為評估與食品接觸的包裝容器之「活性材料」(active material)或「智慧型材料」(intelligence material),其活性與智慧型功能物質之使用安全性。此號規則規定了進行活性或智慧型材料物質的安全評估相關的行政管理,及申請所需提出的科技數據與資訊內容。

 

  歐盟第450/2009號規則是一項落實第1935/2004號規則中,有關食品安全的具體規則。第450/2009號規則要求食品容器中的「活性材料」與「智慧型材料」,必須經過EFSA的安全評估測試。

 

  歐盟於2004年10月通過第1935/2004號規則(Regulation EC No. 1935/2004),首次公佈活性材料與智慧型材料的定義。「活性材料」係指為增加食物保存期限或維持及改善情況,食品容器材料會自動釋放某些物質在食品中以延長期限。「智慧型材料」則指能顯示食物狀況或在包裝上顯示出周圍環境狀態,例如在食品包裝上,結合溫度顯示材料,指出裝運過程中的溫度狀態。

 

  而第450/2009號規則,則是進一步落實規範。在安全評估測試中,EFSA對於申請者提出的容器材料物質,進行風險測試後,將給予申請者得以使用的物質清單。若有食品容器材料的物質經測試後發現,其活性或智慧型功能的物質,與食品容器材料中的其他物質產生交互作用,EFSA可能將限制使用此類物質於食物容器材料中,以確保容器材料之安全性。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟發布與食品接觸的容器材料安全評估規則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3121&no=57&tp=1 (最後瀏覽日:2026/02/04)
引註此篇文章
你可能還會想看
台灣自由軟體今年產值逾12億

  MIC資料顯示,台灣自由軟體產業軟硬體的相關產值從2003年的135億,至今年可望成長至新台幣290億。如果單看自由軟體的產值,今年可望超過新台幣12億,較去年成長26%。   資策會表示,在政策推動下,自由軟體的需求面有逐漸增加的趨勢。就市場整體來看,我國自由軟體產業的產值,今年上半年達到新台幣5億9000萬,全年將超過12億,達到12億3700萬,而從2002年至2006年,台灣自由軟體產業軟體產值的年複合成長率高達55%。   預期到2007年,自由軟體產值可望達新台幣100億元,投入軟體開發廠商將達50%,而政府單位的個人電腦使用比例可望達到10%。

歐盟對於「被遺忘權」公布指導方針與實施準則

  歐盟資料保護主管機關(European Union Data Protection Authorities, EU DPAs,以下簡稱DPAs)所組成的第二十九條資料保護工作小組(The Article 29 Working Party,以下簡稱WP29) ,於2014年11月26日宣布將適用5月13日Google西班牙案(C-131/12)判決結果之指導方針(guideline)。該項宣示確立了被遺忘權效力所及之範圍,以及各國DPAs受理資料主體(data subject)所提出訴訟之標準。   WP29表示,一如該判決所示,將連結於搜尋結果清單中移除,必須以全球網域為範圍,才能使資料主體權利受到完整、有效之保護,並且所依據歐盟資料保護指令95/46/EC才不至於受到規避。因此,儘管搜尋引擎營運者如Google認為,該項指令效力僅限制於歐洲,以及全球網域中低於5%歐洲網路使用戶,所以他們只需要將具爭議的連結,從歐盟網域的用戶搜尋結果中移除即可。但WP29則強調,倘若判決僅以歐盟網域為限制範圍,對於欲為歐盟公民隱私保護的立意來說,可能將無法全面保護。鑑此,歐洲隱私監管機構(Europe’s privacy regulators)亦於2014年11月26日表示,搜尋引擎營運者如Google公司,將連結於搜尋結果清單中移除,必須以全球網域為範圍,而非只是僅以歐盟境內網域為資料主體得要求實行被遺忘權(right to be forgotten)的範圍,以符合歐洲法院判決的要求結果。   自該判決所確立之資料保護權利主張,以資料主體發現某一搜尋係以其姓名為基礎,而搜尋結果的清單顯示通往含有該個人資訊網頁之連結,則資料主體得直接與搜尋引擎營運者聯絡(approach);次之,若搜尋引擎營運者不允其要求,資料主體則得轉向各國DPAs,在特定情形下,要求將該連結從搜尋結果清單之移除 。係該判決以歐盟資料保護指令95/46/EC為法規依據,經由釐清相關爭點、樹立指導方針及準則(criteria),謹分別列出如下: (一)搜尋結果是否連結至個人資訊,並且包含資料主體之姓名、筆名或暱稱; (二)是否資料主體在公領域居有重要角色或具公眾形象,以及是否公眾應具有取得前述資料之法益; (三)是否資料主體為少數例子,(意即顯見DPAs可能要求移除該搜尋結果) (四)是否資料具正確性; (五)是否資料具關聯性且不過份,並(a)連結至資料主體之工作生活;(b)搜尋結果(the search result)連結至據稱對訴訟者為憎恨、評論、毀謗、汙辱或具侵犯性資訊;(c)資料清楚反映為個人意見,或顯然受過驗證為事實。 (六)是否根據資料保護指令第8條,該資料具敏感性如個人健康狀況、性向或宗教信仰; (七)是否該資料已經過時,或是對於資料處理目的來說,其存在已為冗贅; (八)是否該資料處理已足生對資料主體之偏見,並且對其隱私已具有不對等的負面影響; (九)是否搜尋結果與資料連結,已造成資料主體暴露於危險威脅,例如竊取身分或受到跟蹤; (十)是否資料主體(a)自願使公眾知悉其資訊內容,或(b)可合理據知其所資訊內容將使公眾所知悉,或(c)意圖使公眾知悉其資訊內容; (十一)原有資訊是否以新聞目的為出版,而該項標準不得單獨為拒絕請求移除之基礎; (十二)資訊之出版者是否具有法律依據或義務,使該個人資料得公諸於世; (十三)是否該資料涉及刑事犯罪,而應由DPAs以公權力使犯罪者資訊公諸於世,原則上DPAs可能考慮對犯罪發生年代相對久遠、犯行較輕者,為搜尋結果之移除;而較不可能對近期發生、犯行嚴重者,為搜尋結果之移除。   以上13項準則皆立基於大眾取得資料權之法益為衡量,供各國依個案判斷是否受理資料主體所提出訴訟,以俾利未來各國DPAs處理相關爭訟之遵循依據。

買回用戶迴路的另一種選擇

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP