歐盟食品安全局(European Food Safety Authority, EFSA)於2009年5月29日發布歐盟第450/2009號規則(Regulation EC No. 450/2009),內容為評估與食品接觸的包裝容器之「活性材料」(active material)或「智慧型材料」(intelligence material),其活性與智慧型功能物質之使用安全性。此號規則規定了進行活性或智慧型材料物質的安全評估相關的行政管理,及申請所需提出的科技數據與資訊內容。
歐盟第450/2009號規則是一項落實第1935/2004號規則中,有關食品安全的具體規則。第450/2009號規則要求食品容器中的「活性材料」與「智慧型材料」,必須經過EFSA的安全評估測試。
歐盟於2004年10月通過第1935/2004號規則(Regulation EC No. 1935/2004),首次公佈活性材料與智慧型材料的定義。「活性材料」係指為增加食物保存期限或維持及改善情況,食品容器材料會自動釋放某些物質在食品中以延長期限。「智慧型材料」則指能顯示食物狀況或在包裝上顯示出周圍環境狀態,例如在食品包裝上,結合溫度顯示材料,指出裝運過程中的溫度狀態。
而第450/2009號規則,則是進一步落實規範。在安全評估測試中,EFSA對於申請者提出的容器材料物質,進行風險測試後,將給予申請者得以使用的物質清單。若有食品容器材料的物質經測試後發現,其活性或智慧型功能的物質,與食品容器材料中的其他物質產生交互作用,EFSA可能將限制使用此類物質於食物容器材料中,以確保容器材料之安全性。
本文為「經濟部產業技術司科技專案成果」
有鑑於未滿18歲青少年透過交友網站而遭受性侵害等事件頻傳,日本警察廳專家研究會議,建議增訂課以交友網站業者應向地方政府公安委員會提出申請,以及嚴格確認會員年齡等義務。警察廳在接受前述意見後,將進行「交友網站規範法」修法作業,並於徵求各方意見後,向國會提出修正法案。 日本政府於2003年施行「利用網路異性介紹事業引誘兒童行為規範法」(簡稱「交友網站規範法」)後,被害兒童人數逐年減少;但自2006年起再度呈現攀升趨勢。依據現行法規定,引誘未滿18歲兒童利用交友網站而進行性行為或援助交際者,將處以六個月以下拘役或100萬日圓以下罰金。對於交友網站業者,除應明示禁止兒童利用外,並課以確認使用者非兒童之義務。然而,在該法施行後,警察廳雖得對特定業者進行警告,卻因交友網站使用海外伺服器或利用免費網站,伺服器管理者無法確認交友網站業者的資料,而引發許多問題。因此,警察廳認為現行規範法實施四年後,規範效果已經遞減,而開始著手進行修法。 日本警察廳根據專家研究會議之建議,提出「網站經營者責任明確化」、「防止兒童利用」以及「排除資格不符的業者」等三大因應策略。未來「交友網站規範法」之修法方向,將課以交友網站業者向地方政府公安委員會提出申請,並應嚴格確認會員年齡等之義務。如業者發現使用者為兒童,或得知大人對兒童留下買春的邀約時,業者必須刪除該文字,並應要求該使用者退出會員。此外,「交友網站規範法」也將增訂停止命令,對於不遵從改善命令之業者,將可以強制停止業務外,並應審查是否為黑道等不良份子,以排除不適格的業者。為使停止命令具有實效性,也將檢討是否對不服從命令之業者科以刑事罰則。另一方面,從保護兒童的觀點來看,監護人與行動電話業者亦扮演重要角色,故也擬增訂加強電信業者應負限制連結或過濾交友網站等之責任。
英國、新加坡領導全球發布供應鏈勒索軟體防護指引在勒索軟體攻擊快速進化、供應鏈弱點成為主要攻擊途徑的背景下,英國於10月24日發布「全球性供應鏈勒索軟體防護指引」(Guidance for Organisations to Build Supply Chain Resilience Against Ransomware),該指引係由英國與新加坡共同領導的「反勒索軟體倡議」(Counter Ransomware Initiative, CRI)框架下推動,旨在協助各國企業降低勒索軟體事件的發生率與衝擊。該指引獲得CRI 67個成員國與國際組織的支持,標誌國際社群在供應鏈資安治理上的最新進展。 國內政部(UK Home Office)指出,勒索軟體已成全球關鍵基礎設施與企業最主要的威脅之一。根據IBM發布之2025年資料外洩報告(Cost of a Data Breach Report 2025)估計,單一勒索攻擊的全球平均成本高達444萬美元。隨著攻擊手法演進,勒索攻擊已由單點入侵擴大為透過供應鏈滲透,攻擊者常以第三方服務供應商為跳板,一旦供應商遭入侵,即可能向上或向下影響整體產業鏈。英國2024年醫療檢驗服務供應商Synnovis遭勒索軟體攻擊事件,即造成數千次門診與手術延誤,凸顯供應鏈風險的實質衝擊。 該指引從供應鏈角度提出四大防護方向,英國政府與CRI強調,企業應在營運治理、採購流程與供應商管理中系統性導入相關措施,包括: 一、理解供應鏈風險的重要性 在高度互聯的數位環境中,供應鏈已成為勒索軟體攻擊的主要目標,企業應將供應鏈資安視為營運韌性與組織治理的核心要素。 二、辨識關鍵供應商與其資安成熟度 企業應建立完整的供應商清冊,評估其資安控管措施、過往資安事件紀錄、營運與備援能力、保險安排,以及其可存取之系統與資料範圍。 三、在採購與合約中落實資安要求 企業應要求供應商具備基本資安控制措施,包括多因素驗證、系統更新與修補管理、網路分段、安全設定及惡意程式防護等。 同時,合約中應納入資安事件通報義務、稽核權限、營運復原計畫及違規處置機制,並鼓勵供應商採用國際資安標準,例如Cyber Essentials與ISO/IEC27001。 四、持續檢討並更新防護措施 企業應與供應商共同檢討已發生事件及未實際造成損害但已暴露潛在風險之情形(Near Miss,即近乎事故),不論是否構成正式資安事件,均應納入檢討範圍;並定期進行資安演練、共享威脅情資,依攻擊趨勢滾動修正合約與內部規範。 指引同時指出,供應鏈常見弱點包括過度依賴少數供應商、缺乏供應鏈可視性,以及資安稽核與驗證機制不足。英國政府與CRI亦強調,雖然網路保險可作為風險管理工具之一,但無法取代基本且持續的資安防護措施。 該指引適用範圍涵蓋科技、資訊服務、能源、公用事業、媒體與電信等多個產業,顯示供應鏈資安已成全球營運安全的共同課題。英國與新加坡呼籲企業及早建立制度化的供應鏈資安治理架構,以強化全球數位經濟的整體韌性,降低勒索軟體攻擊帶來的系統性風險。
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
論政府資料探勘應用之個人資料保護爭議