繼美國最高法院於Microsoft Corp. v. AT&T Corp. 做出與專利法治外法權有關的判決後,美國聯邦巡迴上訴法院於2009年8月19日再次做出限縮解釋專利法第271條(f)項於美國境外的效力。
美國專利法第271條(f)項規定未經許可提供或使人提供專利產品之元件,將之由美國供應(“supply”)至美國境外完成組合,亦視為侵害該專利產品之專利權。此項規定為美國國會為防範企業藉由在美國境內製造非專利保護之零組件後再運送之海外進行組合以規避專利侵權責任而制定。之後,在實物案例中,關於第271條(f)項之解釋與適用範圍產生諸多爭議。美國最高法院於其在2007年Microsoft Corp. v. AT&T Corp. 中強調不應擴張解釋第271條(f)項之文字。
於Cardiac Pacemakers Inv. V. St. Jude Medical Inc. 一案中,原告Cardiac Pacemakers控告被告St. Jude Medical所販賣的植入式心臟整流去顫器 (implantable cardioverter defibrillator)之使用會侵犯原告所擁有的一個利用植入式心臟刺激器治療心律不整的方法專利 (a method of heart stimulation using an implantable heart stimulator)。本案的爭點在於被告銷售可實施原告美國專利方法的產品或裝置讓該專利方法於美國境外被實施的行為是否構成第271條(f)項之侵害。美國聯邦巡迴上訴法院推翻其於2005年之判決(Union Carbide Chemicals Plastics Technology Corp. V. Shell Oil Co.),判定專利法第271條(f)項不適用於方法專利。亦即,被告銷售可實施原告美國專利方法的產品至海外的行為不構成第271條(f)項所規定之侵權行為。
此判決對原告Cardiac Pacemakers之衝擊可能較小,因其專利範圍除方法請求項外,亦包含物品請求項,原告還可藉由其物品請求項獲得侵權損害賠償。但此案可能對僅能以方法申請專利的產業如生技藥業(某些診斷及檢驗僅能以方法申請專利)及軟體業造成較大的影響。
歐洲資料保護監管機關(European Data Protection Supervisor,以下簡稱EDPS)是一個獨立的監督機關,其任務主要在於監督歐盟個人資料的管理程序、提供影響隱私的政策及法制建議、與其他類似機關合作以確保資料的保護。 EDPS於今(2012)年6月8日,針對歐盟執委會於今(2012)年3月9日發布的「智慧電表系統發展準備建議」(Recommendation on preparations for the roll-out of smart metering systems,以下簡稱準備建議)提出相關意見。「智慧電表系統發展準備建議」乃係針對智慧電表部署之資料安全保護及經濟成本效益評估,提出發展準備建議,供會員國於進行相關建置及制定規範時之參考。然EDPS指出,執委會對於智慧電表中個人資料保護的重視雖值得肯定,但並未在準備建議中提供更具體、全面且實用的指導原則。智慧電表系統雖能帶來顯著的利益,但造成個人資料的大量蒐集,可能導致隱私的外洩,或相關數據遭使用於其他目的。 有鑑於相關風險,EDPS認為在準備建議中,應更加強其資料保護的安全措施,至少應包含對資料控制者在處理個人資料保護評估時有強制的要求;此外,是否有必要進行歐盟層級的立法行動亦應予以評估。EDPS提出的意見主要包括:(1)應提出更多有關選擇資料當事人及處理相關資料的法律依據,例如電表讀取的頻率、是否需取得資料當事人同意;(2)應強制「提升隱私保護技術」(privacy-enhancing technologies)的適用,以限縮資料的使用;(3)從資料保護的角度來釐清參與者的責任;(4)關於保存期間的相關原則,例如對於家戶詳細消費資訊的儲存期間、或在針對帳單處理的情形;(5)消費者能直接近取其能源使用數據,提供有效的方式使資料當事人知悉其資料的處理及揭露,提供有關遠端遙控開關之功能等訊息。
南韓個資保護委員會發布人工智慧(AI)開發與服務處理公開個人資料指引南韓個資保護委員會(Personal Information Protection Commission, PIPC)於2024年7月18日發布《人工智慧(AI)開發與服務處理公開個人資料指引》(인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서)(以下簡稱指引)。該指引針對AI開發與服務處理的公開個人資料(下稱個資)制定了新的處理標準,以確保這些資料在法律上合規,且在使用過程中有效保護用戶隱私。 在AI開發及服務的過程中,會使用大量從網路上收集的公開資料,這些公開資料可能包含地址、唯一識別資訊(unique identifiable information, UII)、信用卡號等個資。這些公開的個資是指任意人可藉由網路抓取技術自公開來源合法存取的個資,內容不限於個資主體自行公開的資料,還包括法律規定公開的個資、出版物和廣播媒體中包含的個資等。由於公開資料眾多,在現實中很難在處理這些公開個資以進行AI訓練之前,取得每個個資主體的單獨同意及授權,同時,南韓對於處理這些公開個資的現行法律基礎並不明確。 為解決上述問題,PIPC制定了該指引,確認了蒐集及利用公開個資的法律基礎,並為AI開發者和服務提供者提供適用的安全措施,進而最小化隱私問題及消除法律不確定性。此外,在指引的制定過程中,PIPC更參考歐盟、美國和其他主要國家的做法,期以建立在全球趨勢下可國際互通的標準。 指引的核心內容主要可分為三大部分,第一部分:應用正當利益概念;第二部分:建議的安全措施及保障個資主體權利的方法;及第三部分:促進開發AI產品或服務的企業,在開發及使用AI技術時,注意可信任性。 針對第一部分,指引中指出,只有在符合個人資料保護法(Personal Information Protection Act, PIPA)的目的(第1條)、原則(第3條)及個資主體權利(第4條)規定範圍內,並滿足正當利益條款(第15條)的合法基礎下,才允許蒐集和使用公開個資,並且需滿足以下三個要求:1.目的正當性:確保資料處理者有正當的理由處理個資,例如開發AI模型以支持醫療診斷或進行信用評級等。2.資料處理的必要性:確保所蒐集和利用的公開資料是必要且適當的。3.相關利益評估:確保資料處理者的正當利益明顯超越個資主體的權利,並採取措施保障個資主體的權利不被侵犯。 而第二部分則可區分為技術防護措施、管理和組織防護措施及尊重個資主體權利規定,其中,技術防護措施包括:檢查訓練資料來源、預防個資洩露(例如刪除或去識別化)、安全存儲及管理個資等;管理和組織防護措施包括:制定蒐集和使用訓練資料的標準,進行隱私衝擊影響評估(PIA),運營AI隱私紅隊等;尊重個資主體權利規定包括:將公開資料蒐集情形及主要來源納入隱私政策,保障個資主體的權利。 最後,在第三部分中,指引建議AI企業組建專門的AI隱私團隊,並培養隱私長(Chief Privacy Officers, CPOs)來評估指引中的要求。此外,指引亦呼籲企業定期監控技術重大變化及資料外洩風險,並制定及實施補救措施。 該指引後續將根據PIPA法規修訂、AI技術發展及國際規範動向持續更新,並透過事前適當性審查制、監管沙盒等途徑與AI企業持續溝通,並密切關注技術進步及市場情況,進而推動PIPA的現代化。
加州立法機關提出2020年加州消費者隱私法修正案,擴大對未成年消費者個人資料之保護2024年1月29日,加州立法機關提出2020年加州消費者隱私法(California Consumer Privacy Act of 2020)之修正案,限制企業出售、分享、使用及揭露18歲以下消費者的個人資料。 2020年加州消費者隱私法旨在保護消費者之個人資料相關權利。依現行條文,企業向第三方出售、分享消費者個資前,應向消費者發出通知。而消費者有權拒絕出售、分享其個資,即便消費者曾經同意,亦有權隨時要求企業停止出售、分享行為。現行條文尚禁止企業在明知消費者未滿16歲的情況下,出售或分享消費者個資。除非年滿13歲消費者本人授權,或未滿13歲消費者父母授權,企業方可為之。 然該法修正案調整了前述條文,改為禁止企業在明知消費者未滿18歲的情況下,出售或分享消費者個資,除非企業取得年滿13歲消費者本人之授權,或取得13歲以下消費者父母之授權。 加州消費者隱私法修正案亦針對未成年人個資的使用與揭露增設限制。依現行條文,消費者有權限制企業只能在提供商品、服務的必要範圍內使用其敏感個資。若企業欲對敏感個資為原定目的外之使用或揭露、或敏感個資可能被用於或揭露予第三方,企業應向消費者發出通知。而消費者有權限制或拒絕企業之使用、揭露行為。而後該法修正案在同條增加未成年人個資使用、揭露相關規範,規範企業不得使用、揭露18歲以下消費者個資。除非年滿13歲消費者本人同意,或是未滿13歲消費者父母同意企業為之。 若修正案通過,再配合現行條文於行政執行(Administrative Enforcement)章節之處罰規定,將能有效擴大該法對未成年人的保護。該修正案亦以條文要求加州隱私保護局(California Privacy Protection Agency)在2025年7月1日前,廣泛徵求公眾意見並調整相應法規,以進一步實現該法目的。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。