繼美國最高法院於Microsoft Corp. v. AT&T Corp. 做出與專利法治外法權有關的判決後,美國聯邦巡迴上訴法院於2009年8月19日再次做出限縮解釋專利法第271條(f)項於美國境外的效力。
美國專利法第271條(f)項規定未經許可提供或使人提供專利產品之元件,將之由美國供應(“supply”)至美國境外完成組合,亦視為侵害該專利產品之專利權。此項規定為美國國會為防範企業藉由在美國境內製造非專利保護之零組件後再運送之海外進行組合以規避專利侵權責任而制定。之後,在實物案例中,關於第271條(f)項之解釋與適用範圍產生諸多爭議。美國最高法院於其在2007年Microsoft Corp. v. AT&T Corp. 中強調不應擴張解釋第271條(f)項之文字。
於Cardiac Pacemakers Inv. V. St. Jude Medical Inc. 一案中,原告Cardiac Pacemakers控告被告St. Jude Medical所販賣的植入式心臟整流去顫器 (implantable cardioverter defibrillator)之使用會侵犯原告所擁有的一個利用植入式心臟刺激器治療心律不整的方法專利 (a method of heart stimulation using an implantable heart stimulator)。本案的爭點在於被告銷售可實施原告美國專利方法的產品或裝置讓該專利方法於美國境外被實施的行為是否構成第271條(f)項之侵害。美國聯邦巡迴上訴法院推翻其於2005年之判決(Union Carbide Chemicals Plastics Technology Corp. V. Shell Oil Co.),判定專利法第271條(f)項不適用於方法專利。亦即,被告銷售可實施原告美國專利方法的產品至海外的行為不構成第271條(f)項所規定之侵權行為。
此判決對原告Cardiac Pacemakers之衝擊可能較小,因其專利範圍除方法請求項外,亦包含物品請求項,原告還可藉由其物品請求項獲得侵權損害賠償。但此案可能對僅能以方法申請專利的產業如生技藥業(某些診斷及檢驗僅能以方法申請專利)及軟體業造成較大的影響。
為因應近年來人口增長、氣候變遷對糧食安全之威脅,歐洲各國皆認為糧食安全( Food Security)議題為亟待解決之議題,應投入資源研究。為此,2012年歐洲理事會(The European Council),始提出FACCE-JPI策略研究議程(The Strategic Research Agenda of the Joint Programming Initiative on Agriculture, Food Security and Climate Change),議程主要係針對歐洲農業、糧食安全和氣候變化進行整合研究。來自21個歐洲國家代表及研究學者,提出該年度糧食安全之重要觀察議題與發展方向,欲透過此議程建立研究資源整合機制,提高歐盟因應糧食生產挑戰之研究、應對能力。 歐洲理事會於去年(2012)12月提出本年度策略研究議程,內容除重申歐盟應整合糧食安全研究能量外,該議程更指出五大核心研究議題,反映歐盟對糧食安全威脅多元化之重視 ,本議程研究重點歸納如下: 1. 氣候變遷與糧食安全永續 2. 環境永續發展與農業精緻化 3. 糧食供需、生物多樣性與生態系統平衡 4. 氣候變遷之因應 5. 減緩氣候異常現象之有效措施 本議程以核心研究為理論基礎,有效整合各會員國研究能量,更針對各別領域提出具體實踐策略,藉以強化基礎溝通平台、建立歐洲知識訊息交換能力,便利後續評估、監測機制的建立。 策略議程取代傳統將糧食安全視為「國家內政」議題,而以「區域整合」層次處理,象徵歐盟糧食安全共識逐漸發展之趨勢。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。
新近奈米科技智財法制之發展趨勢 解析中國江蘇省「企業知識產權管理規範」之內容與對台商的影響