美國衛生部隸屬之醫療資訊科技標準委員會(Health IT Standards Committee)為了因應「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, “ARRA”)的通過,制定了新的電子醫療紀錄的隱私、安全標準,以擴大保護電子醫療紀錄的使用安全。
這次制定的電子醫療紀錄的隱私、安全標準,將透過具有足夠防護能力的醫療資訊科技系統標準,來保護電子醫療紀錄的交換,並且擴大適用範圍到醫療照護廠商與提供者,要求其必須在2011年前達到幾項資訊的使用控制標準,包括「醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act, “HIPAA”)與「加密促進標準」(Advanced Encryption Standard)之相關規定,以完備個人電子醫療資訊的保護網。
在此次訂立的標準之下,任何人員或是應用程式欲使用與接近電子醫療紀錄,應符合法律所授予的接近與使用之要件。同時,處理個人醫療資訊的系統,也必須具備對個人醫療資訊加密與解密的能力,以保障個人醫療資訊的安全與完整。除了以上的要求,這些標準也要求相關的適用機構,必須在2013年以前完成符合病歷交換格式(HL7)的使用接近控制、安全宣示標記語言(Security Assertion Mark-up Language, “SAML”)、網路服務認證(Web Service Trust, “WS-Trust”)以及促進資訊標準建置組織(Organization for the Advancement of Structured Information Standards, “OASIS”)的機制,以保障醫療資訊的安全。
本文為「經濟部產業技術司科技專案成果」
從新一期發布之強化農業生產基礎計畫談日本智慧農業推動策略 資訊工業策進會科技法律研究所 劉宥妤 副法律研究員 2020年11月13日 壹、日本內閣推動智慧農業政策之演進 日本內閣推動智慧農業相關政策,促使農林漁畜業及地方發展,首現於2013年「農林水產業地域活力創造計畫」(以下簡稱活力創造計畫)[1],計畫指出日本預計透過活用機器人技術與農業ICT(資通訊技術),實現超省力、高品質生產的新農業,設置研究會以規劃智慧農業未來藍圖、確保機器人技術安全性政策等,促進高等栽培技術知識外顯化,推動開發生產管理與農業經營指導等系統。活力創造計畫係由日本內閣設置之農林水產業地域活力創造本部[2](以下簡稱活力創造本部)發布,活力創造本部由內閣首相擔任本部長,內閣官房長官、農林水產大臣擔任副本部長以及相關閣僚參與。 日本政府隨後於2016年、2019年發布「農業競爭力強化計畫」與「農業生產基礎強化計畫」,這些計畫與智慧農業推動也都息息相關。此揭係針對該時期農業領域待解決之議題提出相對應的強化政策,並將這些計畫統整歸納進活力創造計畫,做為推動農業整體性發展之政府最高指標。 2016 年 11 月29日活力創造本部公布「農業競爭力強化計畫」,主要目的為整備農業經營環境,使農民得以自由展開經營的環境,同時解決僅靠農民努力無法解決的結構性問題。計畫分為四個面向,包括:一、整頓農業上下游產業;、改善人力與土地;三、引進保險互助制度;四、改革酪農業[3],公布該計畫的同時,將該計畫納入活力創造計畫並公布改訂版的活力創造計畫[4],做為農業競爭力再強化改革之項目。與智慧農業推動相關項目可見於(1)「二、改善人力與土地」面向,促進開發活用ICT遠距離監視水田之低成本水資源管理系統,以構築地區水資源管理模式;(2)「四、改革酪農業」面向,為達到穩定配方飼料價格、強化肉牛生產基礎之目標,推動活用 ICT 減輕勞動負擔、提高生產力以及推動擴大生產規模。 活力創造本部於去(2019)年12月10日公布「農業生產基礎強化計畫」[5]政策,同時公布已納入該計畫的改定版活力創造計畫,旨在加強生產基礎,以加速轉型為進攻型農業,安倍首相同日表示將持續擴大向全球推廣安全、可靠的日本農產品,日本政府透過利用先進技術和促進智慧農業發展,以擴大農產品出口,並決定將鼓勵外國放寬農產品進口限制列為政策方針。財政年度預算追加約3,200億日元(約883億台幣)作為農業措施,利用該預算加強生產基礎,擴大農產品出口量以及鼓勵年輕人參與農業。政策重點之一即為智慧農業落地利用與推動數位政策,包括至2022年無人機噴灑農藥擴大至100萬公頃、至2025年實踐大多數主要從農者能活用數據之農業[6]。 貳、農業生產基礎強化計畫—智慧農業落地實用與數位政策推動 農業生產基礎強化計畫預計藉由強化農業生產基礎,以因應國民必要糧食安定供給、提升糧食自給率、從農者不足農地減少、頻繁發生之自然災害與家畜傳染病、農產品貿易國際環境變化等議題。 計畫構成共11項:1.設立促進農產輸出之指揮總部以更擴大輸出、2.擴大肉用牛・酪農生產方案、3.對應新需求之園藝作物生產體制強化、4.水田農業種植作物轉換為高收益作物、 5.智慧農業落地實用與數位政策推動、6.促進農林水產業之新就業者擴大加入與穩定就業、7.包含梯田等中山間地域[7]之基礎建設整備與活性化、8.強化與食品產業、供應商企業等合作、9.得以對應人手不足之食品流通合理化、10.強化對應極端化自然災害、11.強化豬瘟(Classical Swine Fever,CSF)、非洲豬瘟(African Swine Fever,ASF)等家畜疾病對策。 其中「5.智慧農林漁業的落地實用以及數位政策的推動」內容包括:大力推動活用無人機、IoT、AI等智慧化技術於農林漁業現場落地實用之同時,檢視以數位技術為前提之政策方法,推動農業數位轉型(農業Digital Transformation,農業DX[8]),細項如下所列。 1.加速智慧農業技術落地實施 (1)關於智慧農業實證,包括以果樹、加工用及商用的蔬菜、畜產等需要進一步實證之項目為中心擴大進行,設定優先採選範圍,於災區與中山區地域推廣實證。 (2)促進創造出能夠提供低成本智慧農業技術的新服務(例如共享服務等),有助於加速化智慧農業的落地實施。 (3)由於利用無人機噴灑農藥之方式的快速普及,至2022年度的噴灑面積將擴大到100萬公頃。 (4)為邁向智慧農業的持續性發展,制定地方型戰略,檢討於農業生產現場導入智慧農業機器時確保安全性之措施,促進智慧農業教育、活用農業數據協作平台(WAGRI[9]),維護整備資訊網際網絡環境等綜合性地推動。 (5)為推動農林漁產業領域的創新,例如農林漁產業的完全自動化與無人化,推動具有挑戰性中長期之研究與開發。 (6)透過森林資源數位化與活用ICT,推動智慧林業技術的落地實施,促進木質特性新素材的開發與實證。 (7)漁業產品從生產到流通等各種情況下所取得之數據,建構讓該數據得以相容、共有、活用的數據協作平台。 (8)通過以上的配套措施與努力,至2025年實現大多數主要從農者能實踐活用數據之農業。 2.實現農業數位轉型(農業Digital Transformation,簡稱農業DX) (1)建構農林水產省共通申請服務(通稱eMaff[10]),農林水產省所有補助金申請在內的行政手續,透過結合ID,從民間私人服務擷取必要資訊等方式,創造得以電子化的環境。 (2)依據不同制度個別管理的農地相關數據,透過活用電子地圖和農林水產省共通申請服務,將開放資料(OPEN DATA)化之每筆「農地區劃[11]」及其關聯資訊集中統一,創造得以有效管理和有效利用的環境。 (3)促進農業者與行政體系所使用之數據項目標準化,提高數據的相互運用性,並有效地掌握和分析資訊。 (4)農業者傾向智慧手機應用程序(MAFF應用程序[12])將於2020年4月正式營運,結合共通申請服務,根據個別農業者的特性、喜好,提供經營農業、政策資訊。 參、結語 日本內閣推動智慧農業政策,從2013年活力創造計畫,初期設立研究會以規劃智慧農業藍圖等宣示性政策,至2016年農業競爭力強化計畫,具體指出單點性智慧農業技術發展目標。演變至2019年農業生產基礎強化計畫,不同於以往散落在各個章節,僅將智慧農業技術做為其他發展目標的強化方式之一,例如利用智慧農業機械或農業ICT做為手段來達到改善土地的主要目標,於2019年計畫中,首度擬定智慧農業專章,不僅明確喊出「2025年實踐大多數主要從農者能活用數據之農業」做為目標,更聚焦強化智慧農業生產基礎,包括活用農業數據協作平台(WAGRI)、農林漁產業的完全自動化與無人化等,再加上實現農業數位轉型政策,觀察上述政策演進,無一不重視數據活用,普及智農技術、標準化數據規格、數據智財管理,成為發展智慧農業之核心基礎。 [1]陳建宏,〈日本「農林水產業、地域活力創造計畫」概要〉,https://www.coa.gov.tw/redirect_files.php?link=mLZJwrpRJ7lxDTde1lsFvObETU2Iq3jbmF99hWT6DgWGEqualWGEqualWGPlusRFYWGSlash0wK9PdunMMQRpcHLfmXJnjgLFrbeJ1OYF9CHQyN&file_name=jRgEdDwWGEqualWGEqual2SY8WGPlusd8qWB0p6wQ (最後瀏覽日:2020/03/24); 農林水產省,〈「農林水産業・地域の活力創造プラン」の改訂について(概要)〉,http://www.maff.go.jp/j/kanbo/katsuryoku_plan/attach/pdf/index-7.pdf(最後瀏覽日:2020/11/13)。 [2]農林水產省,〈農林水産業・地域の活力創造プラン〉,http://www.maff.go.jp/j/kanbo/katsuryoku_plan/index.html#plan201806(最後瀏覽日:2020/11/13); [3]鄭柏彥、留程鴻、蔡綾容,〈日本農業競爭力強化計畫介紹(上)(下) 〉,財團法人台灣綜合研究院;農林水產省,〈農業競争力強化プログラム〉,https://www.maff.go.jp/j/kanbo/nougyo_kyousou_ryoku/(最後瀏覽日:2020/11/13)。 [4]農林水產省,〈「農林水産業・地域の活力創造プラン」の改訂について〉, https://www.maff.go.jp/j/kanbo/nougyo_kyousou_ryoku/attach/pdf/nougyo_kyoso_ryoku-10.pdf(最後瀏覽日:2020/11/13);農林水產省,〈農林水産業・地域の活力創造プラン(平成28年11月29日改訂) 〉 ;https://www.maff.go.jp/j/kanbo/nougyo_kyousou_ryoku/attach/pdf/nougyo_kyoso_ryoku-5.pdf(最後瀏覽日:2020/11/13)。 [5]農林水産業・地域の活力創造本部,〈農林水産業・地域の活力創造プラン 令和元年12月10日改訂〉,http://www.kantei.go.jp/jp/singi/nousui/dai26/siryou3.pdf(最後瀏覽日:2020/11/13);農林水產省,〈農業生産基盤強化プログラム〉, https://www.maff.go.jp/j/council/seisaku/kikaku/bukai/attach/pdf/kikaku_1223-2.pdf(最後瀏覽日:2020/11/13)。 [6]〈農林水産業・地域の活力創造本部(第26回)議事次第-令和元年12月10日〉,首相官邸網站,http://www.kantei.go.jp/jp/singi/nousui/dai26/gijisidai.html(最後瀏覽日:2020/11/13);日本農民新聞社,〈農林水産業・地域の活力創造プランを改訂=政府〉,2019/12/12,https://agripress.co.jp/archives/4024;農業協同組合新聞,〈水田農業で高収益産地 500創設-政府の生産基盤強化策〉,2019/12/17,https://www.jacom.or.jp/nousei/news/2019/12/191217-39916.php(最後瀏覽日:2020/11/13)。 [7]農林水產省將農業用地分成四種類型,都市的地域、平地農業地域、中間農業地域、山間農業地域,後兩者合稱為中山間地域,係指從平原的外緣至山間地的區域。Wikipedia,〈中山間地域〉,https://ja.wikipedia.org/wiki/%E4%B8%AD%E5%B1%B1%E9%96%93%E5%9C%B0%E5%9F%9F(最後瀏覽日:2020/11/13)。 [8]デジタルトランスフォーメーション(Digital transformation,簡稱DX),https://ja.wikipedia.org/wiki/デジタルトランスフォーメーション、https://en.wikipedia.org/wiki/Digital_transformation(最後瀏覽日:2020/11/13)。 [9]WAGRI代表的是作為一數據平台 ,由各式的數據與服務連環成一個輪,調和各個社群、促進「和」諧,期待引領農業領域之創新,由WA+AGRI組合而成(WA是和的日文+農業AGRI),WAGRI平台網站,https://wagri.net/ja-jp/(最後瀏覽日:2020/11/13)。 [10]農林水產省(Ministry of Agriculture, Forestry and Fisheries,簡稱MAFF)。 [11]為便於農地管理而分級劃分的區域。 [12]MAFF應用程序為暫稱,僅為初步規劃還未定案。
美國對於智慧聯網 IoT 環境隱私保障展開立法工作有鑒於智慧聯網IoT環境下,許多智慧型手持裝置及行動通訊裝置,大量蒐集消費者資訊之隱私權暨資訊安全考量,美國國會於2013年5月10日提出「應用軟體隱私暨資訊安全保護法草案」(Application Privacy, Protection, and Security Act of 2013, APPS Act of 2013, H.R. 1913)進行審議。「應用軟體隱私暨資訊安全保護法草案」草案針對應用軟體(Application)在蒐集消費者資訊前,如何落實「同意」機制,乃強制行動通訊裝置應用軟體開發商(developer)應:(1)提供使用者個人資料蒐集、使用、儲存及公開之通知(notice),而該通知含括所蒐集個人資料之種類、使用目的、有償公開第三者之類別及資料儲存等;(2)取得使用者之同意(consent);消費者依據該草案亦有權撤銷其「同意」(withdrawal of consent)。此外,草案乃強制要求該行動通訊裝置應用軟體開發商,就非法近取之個人資料及經去識別化應用軟體蒐集之個人資料,應採取合理及適當之防衛措施(security measures on personal data and de-identified data)。 並且,針對網路環境下隱私權保護議題,更早之前,美國國會於2013年2月28日提出「線上禁止追蹤法草案」(Do-Not-Track Online Act of 2013) 進行審議。「線上禁止追蹤法草案」草案乃要求聯邦貿易委員會(FTC),就透過個人線上活動追蹤,以蒐集、使用個人資料之行為態樣,進行管制。該管制模式謹據以要求如下:(1)被搜集資料個人應收到簡單、明確、並載明資料使用目的之通知(clear, conspicuous and accurate notice and use of such information),而個人就該通知應予明白之同意(affirmative consent);(2)FTC未來在訂定標準規範時,應(shall)考量所被搜集之資料,是否在匿(隱)名基礎上處理之,遂該資料無法有效被聯結(指認)到特定個人或裝置上;此外,消費者當享有資料不被蒐集的權利(expressed preference by individual not to have personal information collected)。該草案並就違反之個人,設定最高15,000,000美元損害賠償規定。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
從推動體系及法制架構思考我國文化創意產業發展之整合以南韓推動組織與法制架構為例