美國政府在9月15日宣布,為了減少基礎建設的相關費用以及降低政府運算系統的環境衝擊,因此設立Apps.gov網站,展示並提供經政府認可的雲端科技運用。
據美國聯邦政府CIO Vivek Kundra表示,Apps.gov網站是美國政府首度對外發表,針對減少IT花費政策的成果。目前美國政府IT預算幾乎都花費在設立資料中心,單在國家安全部下就設有23個資料中心,而這也造成了聯邦政府的資源消耗在2000年到2006年間增加了兩倍,為了落實減少基礎建設花費的政策,並基於安全性的考量,希望能夠盡量利用現有的系統。
美國政府目前推動的雲端運算倡議計劃有三個主要內容,第一個主要內容即為全新的Apps.gov網站,提供企業一個情報交換平台、社交媒介與雲端IT服務。雖然目前網站尚未完全運作,甚至還曾造成一連串的錯誤訊息,但美國政府當局仍希望該網站最終能成為一次即可滿足的服務商店(one-stop shop),可在一個平台上提供多種類的雲端運算服務。Kundra表示,美國能源部已經開始使用該網站執行部分相關業務。
該計畫的第二個重點則是預算,美國政府在2010年將會致力推動雲端運算領航計畫,並為此編列年度預算,希望能投入更多輕量的工作流程(lightweight workflows)至雲端科技的發展。而在2011年,美國政府則預計會發布相關指導準則至各機關部門。
最後,該計劃亦會配合安全性、隱私及採購等相關政策。Kundra表示,將會確保所有資料都受到完善保護。
Google創辦人之一Sergey Brin也宣佈Google將會投入部份雲端運算系統專供聯邦政府使用,此系統與Google提供給一般企業的系統相似,但會針對政府需求稍做修改。除了Google之外,Microsoft、Facebook、Salesforce.com及Vimeo等公司亦提供雲端運算服務予政府機關使用。
本文為「經濟部產業技術司科技專案成果」
AI 創作是否能獲得著作權?——Thaler 訴美國著作權局案解析 資訊工業策進會科技法律研究所 2025年04月16日 美國哥倫比亞特區聯邦上訴法院於2025年3月18日裁定Stephen Thaler博士與美國著作權局的上訴案,認為AI繪圖作品無法受著作權保護,因為AI並非自然人,無法成為作品作者或進行「職務上創作」。此判決再次確認了美國對AI創作無著作權保護的立場。[1] 壹、事件摘要 此案起源於2019年,Thaler博士為AI繪圖作品「A Recent Entrance to Paradise」向著作權局申請著作權登記,但因AI非自然人創作者,著作權局於2022年駁回申請。[2]Thaler博士認為,這違反憲法對創作的保護,並主張其研發之AI系統「Creativity Machine」為作者,而其本人則透過AI的「職務上創作」享有著作權。Thaler博士不服2023年聯邦地方法院判決而提起上訴。[3] 貳、重點說明 從美國哥倫比亞特區聯邦上訴法院之判決觀之,本案爭點在於: 一、AI是否符合著作權法「作者」之定義:即AI生成作品是否滿足「原創性」與「獨立創作」標準;美國著作權法是否允許非人類創作者擁有著作權? 二、AI作品歸屬問題:Thaler博士主張AI創作之著作權應歸屬於開發者,或透過「職務上創作」使其本人取得著作權。然自然人與AI間關係;是否適用於人類創作者與雇主間法律關係;AI是否能被視為僱員? 上訴法院認同著作權局於2023年3月16日發佈之《AI生成作品著作權登記指引》,該指引強調著作權目前僅保護自然人創作。AI獨立創作或主導作品表達情況無法獲得著作權保護,即使使用者透過指令或調整輸出,亦無法改變此原則。經審查,法院認為因著作權法規定涉及生命週期、由自然人將作品視為遺產繼承,與創作意圖等概念,顯示立法者設定作者應為自然人。本案係爭作品仍由AI獨立創作,Thaler博士僅在初始階段下達指令,故不符「原創性門檻」(Threshold of Originality)之標準。[4] 職務上創作方面,該適用於人類創作者與雇主之間的法律關係,而AI並非法律上自然人,故無法簽署雇傭合約成為員工。[5]綜上,Thaler博士無法透過以上方式取得作品著作權。法院支持著作權局之裁定與意見,認為無需討論至憲法層面問題,僅就目前著作權法是否涵蓋AI自主創作作品及足夠。 參、事件評析 我國智財局已於2023年6月16日發布函釋[6],說明生成式AI模型生成內容是否為獨立之著作而受著作權法保護,視有無「人類精神創作」決定,目前與美國立場相似。美國聯邦上訴法院此次判決,確認AI無法成為著作權的作者,著作權保護僅限於人類創作者。雖然此判決不影響人類使用AI創作,但未來若要改變本案不保護AI自主生成的純機器作品的立場,或許不會從著作權法著手,而是透過立法方式創設新的法律權利來應對。美國國會與著作權局仍在持續研究AI相關法律,如2024年4月美國眾議院司法委員會舉行聽證會[7],討論AI輔助創作與發明的智慧財產權問題,會上專家認為現行法律已涵蓋大部分AI相關議題,新增著作權法規可能增加複雜性並抑制創新。資策會科法所目前持續協助國科會、國發會、文化部等政府部會,觀測研析AI著作權國際法制發展,後續將針對AI在文化藝術運用的著作權等風險與因應提供創作人指引,並因應行政院發展我國主權AI的政策,研提資料取得困境的法制面解決建議。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Thaler v. Perlmutter, 23-5233, (D.C. Cir. 2025), https://law.justia.com/cases/federal/appellate-courts/cadc/23-5233/23-5233-2025-03-18.html (last visited Mar. 26, 2025) [2]Re: Second Request for Reconsideration for Refusal to Register A Recent Entrance to Paradise (Correspondence ID 1-3ZPC6C3; SR # 1-7100387071), U.S. Copyright Office Review Board,https://www.copyright.gov/rulings-filings/review-board/docs/a-recent-entrance-to-paradise.pdf(last visited Mar. 26, 2025) [3]US appeals court rejects copyrights for AI-generated art lacking 'human' creator, https://www.reuters.com/world/us/us-appeals-court-rejects-copyrights-ai-generated-art-lacking-human-creator-2025-03-18/?utm_source=chatgpt.com(last visited Mar. 26, 2025) [4]Copyright Registration Guidance: Works Containing Material Generated by Artificial Intelligence, 88 Fed. Reg. 16,190, 16,192 (March 16, 2023), https://www.skadden.com/-/media/files/publications/2023/03/copyright-office-issues-guidance-on-ai-generated-works/formalguidance.pdf (last visited Mar. 26, 2025) [5]許慈真,美國聯邦地方法院判決Thaler v. Perlmutter : AI生成作品不受著作權保護,2023年9月20日,北美智權報,https://naipnews.naipo.com/9074 (最後點閱時間 : 2025年3月26日)。 [6]智財局函釋(2023年6月16日經授智字第11252800520號函),https://topic.tipo.gov.tw/copyright-tw/cp-407-855070-f1950-301.html (最後點閱時間 : 2025年3月26日)。 [7]HEARING BRIEF: Judiciary Subcommittee Hearing on Artificial Intelligence and Intellectual Property – IP Protection for AI-Assisted Inventions and Creative Works, April 10th, 2024, https://infojustice.org/archives/45692?utm_source=chatgpt.com (last visited Mar. 26, 2025)
我國去識別化實務發展-「個人資料去識別化過程驗證要求及控制措施」我國關於個人資料去識別化實務發展 財團法人資訊工業策進會科技法律研究所 2019年6月4日 壹、我國關於個人資料去識別化實務發展歷程 我國關於個資去識別化實務發展,依據我國個資法第1條立法目的在個資之隱私保護與加值利用之間尋求平衡,實務上爭議在於達到合理利用目的之個資處理,參酌法務部103年11月17日法律字第10303513040號函說明「個人資料,運用各種技術予以去識別化,而依其呈現方式已無從直接或間接識別該特定個人者,即非屬個人資料,自非個資法之適用範圍」,在保護個人隱私之前提下,資料於必要時應進行去識別化操作,確保特定個人無論直接或間接皆無從被識別;還得參酌關於衛生福利部健保署資料庫案,健保署將其所保有之個人就醫健保資料,加密後提供予國衛院建立健保研究資料庫,引發當事人重大利益爭議,終審判決(最高行政法院106年判字第54號判決)被告(即今衛福部)勝訴,法院認為去識別化係以「完全切斷資料內容與特定主體間之連結線索」程度為判準,該案之資料收受者(本案中即為衛福部)掌握還原資料與主體間連結之能力,與健保署去識別化標準不符。但法院同時強調去識別化之功能與作用,在於確保社會大眾無法從資料內容輕易推知該資料所屬主體,並有提到關於再識別之風險評估,然而應採行何種標準,並未於法院判決明確說明。 我國政府為因應巨量資料應用潮流,推動個資合理利用,行政院以推動開放資料為目標,104年7月重大政策推動會議決議,請經濟部標檢局研析相關規範(如CNS 29191),邀請相關政府機關及驗證機構開會討論,確定「個人資料去識別化」驗證標準規範,並由財政部財政資訊中心率先進行去識別化驗證;並以我國與國際標準(ISO)調和之國家標準CNS 29100及CNS 29191,同時採用作為個資去識別化驗證標準。財政部財政資訊中心於104年11月完成導航案例,第二波示範案例則由內政部及衛生福利部(105年12月通過)接續辦理。 經濟部標準檢驗局目前不僅將ISO/IEC 29100:2011「資訊技術-安全技術-隱私權框架」(Information technology – Security techniques – Privacy framework)、ISO/IEC 29191:2012「資訊技術-安全技術-部分匿名及部分去連結鑑別之要求事項」(Information technology – Security techniques – Requirements for partially anonymous, partially unlinkable authentication),轉換為國家標準CNS 29100及CNS 29191,並據此制訂「個人資料去識別化過程驗證要求及控制措施」,提供個資去識別化之隱私框架,使組織、技術及程序等各層面得整體應用隱私權保護,並於標準公報(107年第24期)徵求新標準之意見至今年2月,草案編號為1071013「資訊技術-安全技術-個人可識別資訊去識別化過程管理系統-要求事項」(Management systems of personal identifiable information deidentification processes – Requirements),主要規定個資去識別化過程管理系統(personal information deidentification process management system, PIDIPMS)之要求事項,提供維護並改進個人資訊去識別化過程及良好實務作法之框架,並適用於所有擬管理其所建立之個資去識別化過程的組織。 貳、個人資料去識別化過程驗證要求及控制措施重點說明 由於前述說明之草案編號1071013去識別化國家標準仍在審議階段,因此以下以現行「個人資料去識別化過程驗證要求及控制措施」(以下簡稱控制措施)[1]說明。 去識別化係以個資整體生命週期為保護基礎,評估資料利用之風險,包括隱私權政策、隱私風險管理、隱私保護原則、去識別化過程、重新識別評鑑等程序,分別對應控制措施之五個章節[2]。控制措施旨在使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊(personal identifiable information, PII)進行去識別化之過程。再就控制措施對應個人資料保護法(下稱個資法)說明如下:首先,組織應先確定去識別化需求為何,究係對「個資之蒐集或處理」或「為特定目的外之利用」(對應個資法第19條第1項第4、5款)接著,對應重點在於「適當安全維護措施」,依據個資法施行細則第12條第1項規定,公務機關或非公務機關為防止個資被竊取、竄改、毀損、滅失或洩漏,採取技術上及組織上之措施;而依據個資法施行細則第12條第2項規定,適當安全維護措施得包括11款事項,並以與所欲達成之個資保護目的間,具有適當比例為原則。以下簡要說明控制措施五大章節對應個資法: 一、隱私權政策 涉及PII處理之組織的高階管理階層,應依營運要求及相關法律與法規,建立隱私權政策,提供隱私權保護之管理指導方針及支持。對應個資法施行細則第12條第2項第5款適當安全維護措施事項「個人資料蒐集、處理及利用之內部管理程序」,即為涉及個資生命週期為保護基礎之管理程序,從蒐集、處理到利用為原則性規範,以建構個資去識別化過程管理系統。 二、PII隱私風險管理過程 組織應定期執行廣泛之PII風險管理活動並發展與其隱私保護有關的風險剖繪。直接對應規範即為個資法施行細則第12條第2項第3款「個人資料之風險評估及管理機制」。 三、PII之隱私權原則 組織蒐集、處理、利用PII應符合之11項原則,包含「同意及選擇原則」、「目的適法性及規定原則」、「蒐集限制原則」、「資料極小化原則」、「利用、保留及揭露限制」、「準確性及品質原則」、「公開、透通性及告知原則」、「個人參與及存取原則」、「可歸責性原則」、「資訊安全原則」,以及「隱私遵循原則」。以上原則涵蓋個資法施行細則第12條第2項之11款事項。 四、PII去識別化過程 組織應建立有效且周延之PII去識別化過程的治理結構、標準作業程序、非預期揭露備妥災難復原計畫,且組織之高階管理階層應監督及審查PII去識別化過程之治理的安排。個資法施行細則第17條所謂「無從識別特定當事人」定義,係指個資以代碼、匿名、隱藏部分資料或其他方式,無從辨識該特定個人者,組織於進行去識別化處理時,應依需求、風險評估等確認注意去識別化程度。 五、重新識別PII之要求 此章節為選驗項目,需具體依據組織去識別化需求,是否需要重新識別而決定是否適用;若選擇適用,則保留重新識別可能性,應回歸個資法規定保護個資。 參、小結 國際上目前無個資去識別化驗證標準及驗證作法可資遵循,因此現階段控制措施,係以個資整體生命週期為保護基礎,評估資料利用之風險,使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊進行去識別化之過程,透過與個資法對照個資法施行細則第12條規定之安全維護措施之11款事項,內化為我國業者因應資料保護與資料去識別化管理制度。 控制措施預計於今年下半年發展為國家標準,遵循個資法與施行細則,以及CNS 29100、CNS 29191之國家標準,參照國際上相關指引與實務作法,於技術上建立驗證標準規範供產業遵循。由於國家標準無強制性,業者視需要評估導入,仍建議進行巨量資料應用等資料經濟創新業務,應重視處理個資之適法性,建立當事人得以信賴機制,將有助於產業資料應用之創新,並透過檢視資料利用目的之合理性與必要性,作為資料合理利用之判斷,是為去識別化治理之關鍵環節。 [1] 參酌財團法人電子檢驗中心,個人資料去識別化過程驗證,https://www.etc.org.tw/%E9%A9%97%E8%AD%89%E6%9C%8D%E5%8B%99/%E5%80%8B%E4%BA%BA%E8%B3%87%E6%96%99%E5%8E%BB%E8%AD%98%E5%88%A5%E5%8C%96%E9%81%8E%E7%A8%8B%E9%A9%97%E8%AD%89.aspx(最後瀏覽日:2019/6/4) 財團法人電子檢驗中心網站所公告之「個人資料去識別化過程自評表_v1」包含控制措施原則、要求事項與控制措施具體內容,該網站並未公告「個人資料去識別化過程驗證要求及控制措施」,故以下整理係以自評表為準。 [2] 分別為「隱私權政策」、「PII隱私風險管理過程」、「PII之隱私權原則」、「PII去識別化過程」、「重新識別PII之要求」。
OFCOM將重新檢討商業廣播電視節目贊助規定英國廣播電視主管機關OFCOM於今年十月下旬公布,其將修酌廣播電視規則(Broadcasting Code),放寬商業廣播電視節目/頻道贊助規定。 現行的廣播電視規則禁止特定類型的節目接受贊助,例如新聞和時事節目不得接受贊助,也禁止特定種類之商品或服務廠商贊助特定節目,例如禁止酒商贊助兒童節目。 OFCOM表示將修酌現行規定,放寬節目/頻道贊助之規定,惟在兼顧節目編輯權以及兒童閱聽人之收視權益的考量下,將訂定相關的節目/頻道贊助限制,包括 1.必須使閱聽人知道節目有接受贊助,贊助廠商之資訊必須與節目和廣告內容所有區隔。 2.頻道贊助廠商之資訊不得出現於禁止接受贊助之節目內容中或播放時間之前、後。 3.贊助廠商資訊之呈現不得過於明顯。 4.節目頻道不得以贊助廠商之名稱命名。
歐盟人工智慧辦公室發布「通用人工智慧實踐守則」草案,更進一步闡釋《人工智慧法》之監管規範.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟人工智慧辦公室(European AI Office)於2024 年 11 月 14 日發布「通用人工智慧實踐守則」(General-Purpose AI Code of Practice)草案,針對《人工智慧法》(Artificial Intelligence Act, AIA)當中有關通用人工智慧(General Purpose Artificial Intelligence, GPAI)之部分,更進一步闡釋相關規範。 本實踐守則草案主要分為4大部分,分別簡介如下: (1)緒論:描述本守則之4個基本目標,包含協助GPAI模型提供者履行義務、促進理解人工智慧價值鏈(value chain)、妥適保障智慧財產權、有效評估且緩解系統性風險(systemic risks)。 (2)GPAI模型提供者:有鑒於GPAI模型對於下游系統而言相當重要,此部分針對模型提供者訂定具體責任。不僅要求其提供訓練資料、模型架構、測試程序等說明文件,亦要求制定政策以規範模型用途防止濫用。另於智慧財產權方面,則要求GPAI模型提供者遵守「歐盟數位單一市場著作權指令」(Directive 2019/790/EC)之規定。 (3)系統性風險分類法(taxonomy):此部分定義GPAI模型之多種風險類別,諸如可能造成攻擊之資訊安全風險、影響民主之虛假資訊、特定族群之歧視、超出預期應用範圍之失控情形。 (4)高風險GPAI模型提供者:為防範系統性風險之危害,針對高風險GPAI模型提供者,本守則對其設立更高標準之義務。例如要求其於GPAI模型完整生命週期內持續評估風險並設計緩解措施。 本守則發布之次週,近千名利害關係人、歐盟成員國代表、國際觀察員即展開討論,透過參考此等回饋意見,預計將於2025年5月確定最終版本。