美國政府設立Apps.gov網站推動雲端科技運用

  美國政府在9月15日宣布,為了減少基礎建設的相關費用以及降低政府運算系統的環境衝擊,因此設立Apps.gov網站,展示並提供經政府認可的雲端科技運用。

 

  據美國聯邦政府CIO Vivek Kundra表示,Apps.gov網站是美國政府首度對外發表,針對減少IT花費政策的成果。目前美國政府IT預算幾乎都花費在設立資料中心,單在國家安全部下就設有23個資料中心,而這也造成了聯邦政府的資源消耗在2000年到2006年間增加了兩倍,為了落實減少基礎建設花費的政策,並基於安全性的考量,希望能夠盡量利用現有的系統。

 

  美國政府目前推動的雲端運算倡議計劃有三個主要內容,第一個主要內容即為全新的Apps.gov網站,提供企業一個情報交換平台、社交媒介與雲端IT服務。雖然目前網站尚未完全運作,甚至還曾造成一連串的錯誤訊息,但美國政府當局仍希望該網站最終能成為一次即可滿足的服務商店(one-stop shop),可在一個平台上提供多種類的雲端運算服務。Kundra表示,美國能源部已經開始使用該網站執行部分相關業務。

 

  該計畫的第二個重點則是預算,美國政府在2010年將會致力推動雲端運算領航計畫,並為此編列年度預算,希望能投入更多輕量的工作流程(lightweight workflows)至雲端科技的發展。而在2011年,美國政府則預計會發布相關指導準則至各機關部門。

 

  最後,該計劃亦會配合安全性、隱私及採購等相關政策。Kundra表示,將會確保所有資料都受到完善保護。

 

  Google創辦人之一Sergey Brin也宣佈Google將會投入部份雲端運算系統專供聯邦政府使用,此系統與Google提供給一般企業的系統相似,但會針對政府需求稍做修改。除了Google之外,Microsoft、Facebook、Salesforce.com及Vimeo等公司亦提供雲端運算服務予政府機關使用。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國政府設立Apps.gov網站推動雲端科技運用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3137&no=55&tp=1 (最後瀏覽日:2026/01/05)
引註此篇文章
你可能還會想看
打開學校網路教學的潘朵拉盒子-談教師所開發數位教材的著作權歸屬

日本制定民間個人健康紀錄業者蒐集、處理、利用健康資料之基本指引草案

  日本厚生勞動省、經濟產業省和總務省共同於2021年2月19日公布「有關民間個人健康紀錄(Personal Health Record, PHR)業者蒐集、處理、利用健康資料之基本指引」(民間PHR事業者による健診等情報の取扱いに関する基本的指針)草案,檢討民間PHR業者提供PHR服務之應遵守事項,希望建立正確掌握和利用個人、家族健康診斷或病例等健康資料之電子紀錄制度。   本指引所稱之「健康資料」,係指可用於個人自身健康管理之敏感性個人資料,如預防接種、健康診斷、用藥資訊等;而適用本指引之業者為蒐集、處理、利用上開健康資料並提供PHR服務之業者。根據指引規定,PHR業者應針對資訊安全對策、個人資料處理、健康資料之保存管理和相互運用性及其他等4大面向採取適當措施。首先,在資訊安全對策部份,業者需取得風險管理系統之第三方認證(如資訊安全管理系統制度(ISMS));其次,針對個人資料,業者應制定隱私政策和服務利用規約,並遵守個資法規定;然後,為確保健康資料之保存管理和相互運用性,系統應具備雙向資料傳輸之功能;最後,本指引提供檢核表供業者自行檢查,業者亦應在網站上公佈自行檢查結果。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國廠商使用之DMCA侵權調查正確性遭質疑

  一項由華盛頓大學所發表的研究聲明指出,媒體工業團體正使用有瑕疵的方式調查peer-to-peer網路文件共享中侵害著作權的問題。包括M.P.A.A.、E.S.A.、R.I.A.A等團體,不斷寄出逐年增加的DMCA侵權移除通知(takedown notices)給各大學和其他的網路業者。許多大學會在未經查證的情況下直接將侵權移除通知轉寄給學生,R.I.A.A.甚至跟進其中的一些侵權報告並將之寫入財務報告中。   但在2008年6月5日由華盛頓大學的助理教授等三人所發表的研究中認為這一些侵權移除通知應該更審慎檢視之。研究指出,這些團體在指控檔案分享者的調查過程中有嚴重的瑕疵,可能使對方遭受不當的侵權指控,甚至可能來自其他網路使用者的陷害。在2007年5月及8月的兩次實驗中,研究員利用網路監控軟體監控他們的網路流量,實驗結果顯示即使網路監控軟體並未下載任何檔案,卻仍然接收到了超過400次的侵權警告信。   該研究結果顯示執法單位的調查過程中只查詢了網路分享軟體使用者的I.P.位址,卻未真正查明使用者正在下載或是上傳的實際檔案為何,在這種薄弱的搜查技巧跟技術方式之下任何使用網路文件分享軟體的使用者都可能被告,不論其所分享的檔案是否侵權皆如此。

TOP