美國和歐盟合作推動統一優良臨床試驗規範

  美國聯邦食品藥物管理局(U.S. Food and Drug Administration)和歐洲醫藥局(European Medicines Agency)在2009年7月31日共同公佈了一項名為優良臨床試驗行動(Good Clinical Practices Initiative)的合作計畫,期能藉由該計畫,使得不論是在美國或歐盟,所有臨床試驗之執行,都有遵守相同且適當的規範。

 

  在醫藥品上市申請的實務中,因為大部份的醫藥品都會企圖向廣大的歐美市場扣關,同樣的臨床試驗通常也會分別提交到兩地的醫藥品上市許可申請程序中。故若兩地主管機關可以合作訂出統一的優良臨床試驗規範,則可避免因重複審查所造成的資源浪費,申請者也可以因為統一的規範而加速其在兩地審查的程序,且在跨國資訊交流整合下,也可為臨床試驗研究的參與者提供更好的安全基礎。

 

  此次美國聯邦食品藥物管理局,和歐洲醫藥局合作之優良臨床試驗行動的幾個主要目標如下: 一、定期交換有關優良臨床試驗之實務操作資訊:交換的資訊包括(1)彼此的優良臨床試驗(Good Clinical Practices, GCP)查核計畫,以了解有那些臨床試驗或地點是對方會去查核的,就不需要重覆查核;(2)彼此受理的上市申請案件中,有關GCP的如科學上的建議或上市申請的結果等;以及(3)彼此執行GCP查核之結果。二、共同執行優良臨床試驗審查:藉此了解對方之GCP查核程序,並進而信賴彼此之程序,也藉由共同執行時之交流,提昇彼此查核之技巧,及精進查核之程序。 三、合作增進優良臨床試驗規範:藉由對彼此GCP相關法規、指導原則、和政策等的交流及了解,找出現有規範中可予以改進之處,以增進臨床試驗研究的品質。

 

  自2009年9月1日起,此項合作行動將首先開始一個為期18個月的先期行動,在此先期行動結束後,兩主管機關將會共同發布一份包含其整體行動計畫,及雙方就各自既有法規或程序應予以調整部分。

相關連結
相關附件
※ 美國和歐盟合作推動統一優良臨床試驗規範, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3166&no=57&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
德國法院判決,網站上“連絡我們(Contact-Formula)”非屬德國電信服務法第5條規定之電子聯繫資訊

  德國Essen地方法院判決(Az. 44 O 79/07),網站上之聯絡我們的功能(Contact-Formula),並不符合網路服務者依德國電信服務法第5條(Telemediengesetz, TMG)所應遵守之資訊揭露義務*。   根據德國電信服務法第5條第1項第2款規定,網路服務提供者之資訊揭露義務範圍,包括應提供一個供網路使用者可以快速且直接聯繫網路服務提供者之電子聯繫方式,例如提供電子郵件。   按德國電信服務法第5條規定目的在提供消費者法定之保護,而違反本條規定者,將可依德國「不正競爭防止法,UWG」第4條第11款及第2條第1項第2款規定,視為違反公平競爭之行為。   該法院認為,網站上「連絡我們功能(Contact-Formula)」性質上僅屬於一個用以製造連結的科技措施,使用者需填寫網站上表格,按下傳送鍵後,始能得知網路服務者之電子郵件,而有些網站甚至無法顯示網路服務者之電子郵件。   我國於「電子商務消費者保護綱領」第5點企業經營者應提供有利於消費者選擇及進行交易之充分資訊包括「企業經營者本身資訊」,例如登記名稱、負責人姓名及公司簡介、公司或商號所在地及營業處所所在地、電子郵件、電話、傳真等聯絡方式及聯絡人等資訊,資訊提供範圍與德國電信服務法第5條第1項第2款大抵相同。 *德國電信服務法(TMG)第5條網路服務者應揭露之資訊範圍包括其聯繫資料、特許職業執照證號、營利事業登記證號等。

美國財政部外國資產控制辦公室更新發布與勒索軟體支付相關之制裁風險諮詢

  美國財政部外國資產控制辦公室(The US Department of the Treasury’s Office of Foreign Assets Control, OFAC)於2021年9月21日更新並發布了與勒索軟體支付相關之制裁風險諮詢公告(Updated Advisory on Potential Sanctions Risks for Facilitating Ransomware Payments)。透過強調惡意網絡活動與支付贖金可能遭受相關制裁之風險,期待企業可以採取相關之主動措施以減輕風險,此類相關之主動措施即緩減風險之因素(mitigating factors)。   該諮詢認為對惡意勒索軟體支付贖金等同於變相鼓勵此種惡意行為,故若企業對勒索軟體支付,或代替受害企業支付贖金,未來則有受到制裁之潛在風險,OFAC將依據無過失責任(strict liability),發動民事處罰(Civil Penalty制度),例如處以民事罰款(Civil Money Penalty)。   OFAC鼓勵企業與金融機構包括涉及金錢存放與贖金支付之機構,應實施合規之風險管理計畫以減少被制裁之風險,例如維護資料的離線備份、制定勒索事件因應計畫、進行網路安全培訓、定期更新防毒軟體,以及啟用身分驗證協議等;並且積極鼓勵受勒索病毒攻擊之受害者應積極聯繫相關政府機構,例如美國國土安全部網路安全暨基礎安全局、聯邦調查局當地辦公室。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

印度政府公告個人資料保護法草案

  2018年7月27日印度電子及資訊科技部(Ministry of Electronics and Information Technology, MeitY)公告個人資料保護法草案(Protection of Personal Data Bill),若施行將成為印度首部個人資料保護專法。   其立法背景主要可追溯2017年8月24日印度最高法院之判決,由於印度政府立法規範名為Aadhaar之全國性身分辨識系統,能夠依法強制蒐集國民之指紋及虹膜等生物辨識,國民在進行退稅、社會補助、使用福利措施等行為時都必須提供其個人生物辨識資料,因此遭到人權團體控訴侵害隱私權。最高法院最後以隱私權為印度憲法第21條「個人享有決定生活與自由權利」之保護內涵,進而認為國民有資料自主權,能決定個人資料應如何被蒐集、處理與利用而不被他人任意侵害,因此認定Aadhaar專法與相關法律違憲,政府應有義務提出個人資料專法以保護國民之個人資料。此判決結果迫使印度政府成立由前最高法院BN Srikrishna法官所領導之專家委員會,研擬個人資料保護法草案。   草案全文共112條,分為15章節。主要重點架構說明如下: 設立個資保護專責機構(Data Protection Authority of India, DPAI):規範於草案第49至68條,隸屬於中央政府並由16名委員所組成之委員會性質,具有獨立調查權以及行政檢查權力。 對於敏感個人資料(Sensitive personal data)[1]之特別保護:草案在第4章與第5章兩章節,規範個人與兒童之敏感個人資料保護。其中草案第18條規定蒐集、處理與利用敏感個人資料前,必須獲得資料主體者(Data principal)之明確同意(Explicit consent)。而明確同意是指,取得資料主體者同意前,應具體且明確告知使用其敏感個人資料之目的、範圍、操作與處理方式,以及可能對資料主體者產生之影響。 明確資料主體者之權利:規範於草案第24至28條,原則上資料主體者擁有確認與近用權(Right to confirmation and access)、更正權(Right to correction)、資料可攜權(Right to data portability)及被遺忘權(Right to be forgotten)等權利。 導入隱私保護設計(Privacy by design)概念:規範於草案第29條,資料保有者(Data fiduciary)應採取措施,確保處理個人資料所用之技術符合商業認可或認證標準,從蒐集到刪除資料過程皆應透明並保護隱私,同時所有組織管理、業務執行與設備技術等設計皆是可預測,以避免對資料主體者造成損害等。 指派(Appoint)資料保護專員(Data protection officer):散見於草案第36條等,處理個人資料為主之機構、組織皆須指派資料保護專員,負責進行資料保護影響評估(Data Protection Impact Assessment, DPIA),洩漏通知以及監控資料處理等作業。 資料保存之限制(Data storage limitation):規範於草案第10條與第40條等,資料保有者只能在合理期間內保存個人資料,同時應確保個人資料只能保存於本國內,即資料在地化限制。 違反草案規定處高額罰金與刑罰:規範於草案第69條以下,資料保有者若違反相關規定,依情節會處以5億至15億盧比(INR)或是上一年度全球營業總額2%-4%罰金以及依據相關刑事法處罰。 [1]對於敏感個人資料之定義,草案第3-35條規定,包含財務資料、密碼、身分證號碼、性生活、性取向、生物辨識資料、遺傳資料、跨性別身分(transgender status)、雙性人身分(intersex status)、種族、宗教或政治信仰,以及與資料主體者現在、過去或未來相連結之身體或精神健康狀態的健康資料(health data)。

TOP