美國FTC修正廣告使用推薦與見證指南

  美國聯邦交易委員會(Federal Trade Commission,FTC)於2009年10月5日公佈了新修正的「廣告使用推薦與見證指南(Guides Concerning the Use of Endorsements and Testimonials in Advertising)」,這是該指南自1980年制定以來第一次的更新,並於今年12月1日起生效。此次修訂特別針對商品服務使用心得做出規範,規範亦適用於社交媒體(如Facebook、Twitter及各種類型的部落格等具互動性的媒體)中之心得分享,未來在社交媒體對商品或服務所做出的各種評論,都有可能成為FTC管制的對象。

 

  在社交媒體中所傳遞之商品心得訊息,特別是名人(在該領域分享心得出名者)所分享之訊息,對於網路使用者或消費者之影響力甚大,甚至會改變其是否選擇消費該商品或服務之意願,但其真實性卻未必有相當之保障。有鑑於此,FTC於新修正之指南中即對於心得分享之訊息作出相應規範,重點如下:
1.心得分享者若由商品或服務提供者處受有金錢或相當程度的利益給付,即非單純之心得分享,而有與廣告相同之性質。因此若有虛偽不實陳述的狀況,亦視為是不實廣告。
2.心得分享者必須揭露其與商品或服務提供者的利益關係,使其他消費者明瞭。
3.廣告中若有引用研究結果,而該研究機構為該公司所贊助時,廣告中必須揭露兩者的利益關係。
4.指南同時適用於談話性節目以及社交媒體上所為之心得分享。
而違反上述規定者,可能會依美國聯邦交易委員會法第5條(FTC Act Sec.5)之相關規定每次最高得處以1萬1千美元罰鍰。

 

  此規定之公布引起了部落客(部落格使用者)之質疑,因此FTC廣告實務科(The Division of advertising Practices)之副科長Richard Cleland特別對此做出澄清,其指出:「FTC不會立刻處以罰鍰,也並非所有個案均嚴重至須處以罰鍰。較有可能的作法是,先以警告函警告違規的部落客。且FTC無權對違反FTC法案的行為直接處以罰鍰,若事態嚴重,則FTC會將案件移送地方法院,由法院做出各種處斷,最重可至罰鍰。」

 

  此一指南的約束,固然提供了消費者分辨廣告與心得分享的方式,但是關於更細部的操作,例如何時可認為部落客與商品及服務業者有利益關係,仍有待實務的累積。

相關連結
※ 美國FTC修正廣告使用推薦與見證指南, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3184&no=57&tp=1 (最後瀏覽日:2026/01/05)
引註此篇文章
你可能還會想看
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

美國國家標準及技術研究院公布晶片法補助申請細節及限制

美國商務部(Department of Commerce, DOC)旗下國家標準及技術研究院(National Institute of Standards and Technology, NIST)於2023年2月28日發布《晶片與科學法》(CHIPS and Science Act)補助具體內容,重點如下: 一、申請時間:補助採滾動式錄取模式(rolling basis),先進製程製造補助將於2023年3月31日起開放預先申請(pre-application)與正式申請(full application);成熟製程與其他相關生產設施的製造補助,將分別於2023年5月1日及6月26日開放預先申請及正式申請。 二、補助方式與金額:補助分為直接補助(direct funding)、聯邦政府貸款(federal loans)或第三人提供貸款並由聯邦政府提供擔保(federal guarantees of third-party loans)。直接補助的金額上限預計為預估資本支出的15%。每個計畫可透過一種以上之方式獲得補助,然整體補助金額不得超出預估資本支出的35%。 三、申請流程 1.意向聲明(statement of interest):申請人須提供半導體製造工廠投資計畫的簡要說明,俾利NIST旗下晶片計畫辦公室(CHIPS Program Office)為未來審查進行準備。 2.預先申請:申請人提供更詳盡的計畫內容。晶片計畫辦公室將給予調整意見。 3.正式申請:依照晶片計畫辦公室給予的意見修改後,申請人應遞交完整的計畫申請書,內容必須包含投資計畫的技術與經濟可行性之分析。晶片辦公室審核完畢後,會與申請人簽訂不具約束力的初步備忘錄(non-binding Preliminary Memorandum of Terms),記載補助方式與金額。 4.盡職調查(due diligence):在經過上述程序後,晶片計畫辦公室如認為申請人合理且可能(reasonably likely)取得補助,將對申請人進行盡職調查。 5.補助發放:通過盡職調查後,DOC將開始準備發放補助。 四、補助規範與限制 1.禁止買回庫藏股(stock buybacks):受補助者不得將補助款用於買回庫藏股。 2.人力資源計畫:申請人要求的補助金額若超過1億5千萬美元,須額外說明將如何提供員工可負擔且高品質的子女托育服務。 3.建造期限:受補助者必須於DOC所決定的特定日期(target dates)前開始或完成廠房建造,否則DOC會視情況決定是否收回補助。 4.分潤:補助金額超過1億5千萬美元時,受補助者須與美國政府分享超過申請計畫中所預估之收益,但最高不超過直接補助金額的75%。 5.不得於特定國家擴產與進行研究:受補助者於10年內或與DOC合意的期間內,除特定情況下(15 U.S.C. § 4652(a)(6)(C)),不得於特定國家,如中國,進行大規模半導體製造的擴產(material expansion)、聯合研究(joint research)或技術授權(technology licensing),違反者將會被DOC收回全額補助。

歐洲資料保護監管機關研議提出「智慧電表系統發展準備建議」研究報告

  歐洲資料保護監管機關(European Data Protection Supervisor,以下簡稱EDPS)是一個獨立的監督機關,其任務主要在於監督歐盟個人資料的管理程序、提供影響隱私的政策及法制建議、與其他類似機關合作以確保資料的保護。   EDPS於今(2012)年6月8日,針對歐盟執委會於今(2012)年3月9日發布的「智慧電表系統發展準備建議」(Recommendation on preparations for the roll-out of smart metering systems,以下簡稱準備建議)提出相關意見。「智慧電表系統發展準備建議」乃係針對智慧電表部署之資料安全保護及經濟成本效益評估,提出發展準備建議,供會員國於進行相關建置及制定規範時之參考。然EDPS指出,執委會對於智慧電表中個人資料保護的重視雖值得肯定,但並未在準備建議中提供更具體、全面且實用的指導原則。智慧電表系統雖能帶來顯著的利益,但造成個人資料的大量蒐集,可能導致隱私的外洩,或相關數據遭使用於其他目的。   有鑑於相關風險,EDPS認為在準備建議中,應更加強其資料保護的安全措施,至少應包含對資料控制者在處理個人資料保護評估時有強制的要求;此外,是否有必要進行歐盟層級的立法行動亦應予以評估。EDPS提出的意見主要包括:(1)應提出更多有關選擇資料當事人及處理相關資料的法律依據,例如電表讀取的頻率、是否需取得資料當事人同意;(2)應強制「提升隱私保護技術」(privacy-enhancing technologies)的適用,以限縮資料的使用;(3)從資料保護的角度來釐清參與者的責任;(4)關於保存期間的相關原則,例如對於家戶詳細消費資訊的儲存期間、或在針對帳單處理的情形;(5)消費者能直接近取其能源使用數據,提供有效的方式使資料當事人知悉其資料的處理及揭露,提供有關遠端遙控開關之功能等訊息。

美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作

美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。

TOP