歐盟執委會(European Commission)日前再次呼籲歐盟各國加強處理公眾線上隱私威脅的問題。歐盟執委會所公佈的一項報告指出,雖然近年來歐盟各國皆有相關措施,例如課予垃圾郵件發布者罰款、有期徒刑等,但各國法令仍有相當大的差異。這項報告也認為,各國相關法律在歐盟電信法的改革之下,應更為明確且一致,並加強跨國合作。
歐盟執委會電信委員Viviane Reding表示,雖然歐洲的反垃圾郵件相關立法已有七年,但大部分的歐盟民眾仍受垃圾郵件影響。根據該報告,歐盟從2002年即已立法禁止發佈垃圾郵件及使用偵察軟體,但目前仍有約65%的民眾飽受垃圾郵件騷擾。
歐盟執委會的報告指出 :
本文為「經濟部產業技術司科技專案成果」
擁有Lancome、YSL(Yves Saint Laurent)及Garnier等全球知名品牌的法國L'Oreal集團,於2007年9月向於英國、法國、德國、比利時及西班牙等五國的法院提起商標侵權訴訟,控告全球網拍龍頭eBay放任網路使用者於eBay出售仿冒的香水、化妝品及其他L'Oreal集團產品,導致L'Oreal蒙受重大損失,主張eBay應為網路使用者的侵權行為負起連帶責任。 但繼2008年8月比利時法院率先判決eBay勝訴後,2009年5月法國及英國法院亦接連判決eBay勝訴。法國巴黎法院於5月14日作成的裁決中,表示eBay已恪遵自身所負義務並以良善態度解決仿冒商品問題,因此eBay毋庸為網路使用者的侵權行為加以負責;法院同時表示eBay與L'Oreal雙方應攜手合作,共同制定打擊侵權行為的策略,以防制仿冒商品繼續透過網路販售流通。 法方判決eBay勝訴未久,英國法院緊接於5月22日判決eBay勝訴,對於接連獲勝,eBay仍再三強調本身僅係一單純提供商品交易服務之平台,自無須就使用者侵權行為加以負責;L'Oreal則表示eBay有責採取進一步的措施,以杜絕網路使用者販售仿冒的L'Oreal商品,其並表示未來仍將以eBay助長商標侵權為由,持續於歐洲各國提出訴訟。
何謂「工業4.1J(Japan Industry 4.1J)」?自德國「工業4.0」,開啟所謂第4次工業革命以來,各國政府皆相繼投入資源進行相關計畫,如美國之「先進製造夥伴計畫(Advanced Manufacturing Partnership,AMP)」中國大陸之「中國製造2024」,以及我國之「生產力4.0」等等。 而日本不同於上述其他國家,日本版的工業4.0稱為「工業4.1J」,該計畫並非由國家來主導,而係由民間公司Virtual Engineering Community(VEC)及NTT Communications於2015年3月10日所啟動的一項實證實驗,旨在確認「工業4.1J」之各項技術要件,並且該項目成果非僅提供給VEC之會員,將對所有企業及公眾公開。而所謂的「4.1」表示安全級別比工業4.0更高一級,「 J」則表示源自於日本(Japan)。 日本之「工業4.1J」的運行架構說明如述:首先,將會利用控制系統蒐集相關數據;第二,在雲端平台上記錄及累積數據資料;第三進行即時分析;最後則是透過專家進行事件檢測、分析故障原因並恢復生產、提出安全改善建議等等。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。