美國國會於今年(2009)11月18日提出「聯邦檔案安全分享法案(Secure Federal File Sharing Act)」,內容主要是限制所有政府部門員工(包含約聘制人員),在未經官方正式同意之前,不得下載、安裝或使用任何點對點傳輸(Peer to Peer, P2P)軟體。期望藉由該法案的通過實施,徹底防堵政府及相關個人機敏資料的外洩。
該法案的制定,最初來自於政府部門對其財務資料保護的要求,早於2004年白宮管理及預算辦公室(The White House Office of Management and Budget)即已建議聯邦政府的各個單位應禁止其職員使用P2P軟體,以防止資料外洩。而於將近一個月前,國會道德委員會取得多位國會議員的財務狀況、經歷及競選贊助金額,並作成調查報告,未料一位新進職員將該份未經加密保護的報告存於自家裝有前述P2P軟體的電腦硬碟中,從而導致該份報告內容全部外洩。此一事件立即對向來注重政府及個人資料保護的美國投下了震撼彈,也促使該法案正式浮出檯面。
歐此項法案的提出毫無意外地得到視聽娛樂產業界的正面支持。主因來自多數人藉由此種軟體在網際網路上分享音樂、影片或其他應用軟體,時常侵害他人的智慧財產權,而法案的內容則是要求政府部門員工無論是在工作或是家中使用P2P軟體都須取得官方授權,無疑是直接限制了上述的分享行為。娛樂業者更進一步指出,P2P軟體對資訊安全的危害在於多數人無法明確知道該軟體的運作方式,而無法對其做正確的設定,使得軟體一旦被啟動,電腦內的所有資料:包含個人的社會安全卡號碼、醫療及退稅紀錄等,就立即暴露於網際網路之中!對此,除了推動此項法案的官員大聲疾呼:「用個人自律的方式防止資料外洩已經失敗,證明國會應該有所行動。
美國錄音產業協會(Recording Industry Association of America)則是預測前述國會調查報告的外洩,將會是資安法案重整的強力催化劑。
美國總統川普於2019年2月11日簽署一項行政命令,發布「美國AI倡議」(American AI Initiative),旨在確保美國在AI領域的領導地位,川普並說道:「美國在AI領域的領導地位對於維護美國的經濟和國家安全至關重要」。「美國AI倡議」從五大方面來促進美國在AI領域的領導地位,包括: (一) 投資AI的開發 指示聯邦機構在研發任務及編排預算時,將AI作為優先投資項,確保美國對於AI基礎研發的長遠重視,此外,政府機構並應說明如何將預算用於AI研發開支,以增進對於AI投資的評估。 (二) 數據和資源共享 將聯邦政府中所擁有的統計數據資料、運算模型及運算資源提供給AI研發人員,促進交通和醫療保健等領域的AI發展。 (三) 建立政府標準及監管 白宮科技政策辦公室和美國國家與技術研究院(NIST)制定標準,以提升AI系統的「可靠、穩健、值得信賴、安全、可移轉和具協同性」。透過為不同技術和產業的AI制定使用指南,確保AI的使用安全和適當監管。 (四) 人才培訓 要求各機構為AI進步形成的就業市場變化做好準備,並考慮透過技能培訓課程、獎學金和學徒制度,因應市場人力產生之變化。 (五) 國際參與 與其他國家制定合作策略,協同AI技術的開發,同時確保AI領域之開發符合和不損及美國人的價值觀和利益。 此項倡議雖提及許多面向之發展,但仍然缺少發展細節,亦未提及計畫新資金的投入,因此,許多人對此倡議皆提出質疑。曾協助歐巴馬政府制定AI報告的哈佛大學教授Jason Furman即表示,此「倡議」雖令人鼓舞,但僅是邁出第一步,關鍵的考驗將在於是否能以強而有力的方式確實貫徹執行倡議中的內容,此倡議仍欠缺細節及執行面之部分。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國基改動物法規研擬中基改動物的技術研發腳步雖不如植物快速,不過自1980年出現重大的技術突破後,基改動物的研發成果不斷產出,目前基改動物的研發方向以醫藥用途最多,其次像是環保、食用、抗氣候變遷等,均有相關的研究投入。隨著研發成果的累積,美國也開始構思基改動物的規範議題,2008年9月,美國FDA及APHIS分別就基改動物提出規範細節及資訊調查的公告。 由於美國並未對基改生物訂定管理專法,而是利用既有的法規體系來管理基因改造生物,而既有法規原各有其規範目的,因此如何從這些既有法規的規範目的出發,闡述其用來規範基改動物的適當連結,以及相關主管機關將如何運用既有法規來管理基改動物,便成為研議的重點。 目前FDA內的CVM(Center for Veterinary Medicine)已率先宣告其對基改動物的主管權限,並公告「基因重組動物管理之產業指導原則(草案)」(Draft Guidance for Industry on the Regulation of Genetically Engineered Animals)。FDA認為,由於轉殖進入基改動物體內的重組DNA構體(rDNA construct),已對動物本身的結構與功能(construct and function)產生影響,符合其依聯邦食品藥品及化妝品管理法(Federal Food, Drug, and Cosmetic Act)規定所稱之藥(drug)的定義,因此,FDA宣告其對所有的基改動物(精確來說是轉殖於其體內的重組DNA構體),將視以動物用新藥(new animal drug)管理之,至於基改動物後續可能有不同的用途,則另須符合相關的產品主管法規,始可上市。在APHIS部分,其主要負責動物健康之把關,目前APHIS正對外進行廣泛的資訊蒐集與調查,以作為其後續研擬進一步的管理規則或政策之參考依據。
德國「智慧聯網倡議」德國聯邦經濟及能源部於2016年9月1日公布數位議程框架新的經費公告,以支持智慧聯網示範的實施與推廣。德國聯邦政府於2015年9月公布的智慧聯網(Initiative Intelligente Vernetzung)戰略,該戰略實施的4個面向如下: (1)應用領域的支持:聚焦教育、能源、衛生、交通和管理五大應用領域的數位化和智慧化運用及發展,並排除相關實施障礙; (2)促進合作:促進資通訊技術與五大應用領域間的跨領域溝通與合作; (3)改善框架條件:加強投資環境並消除相關障礙;保護隱私權及加強網路安全;制訂相關標準化作業;提升商品或服務市場競爭力; (4)加強各界參與:促進各界參與及討論,共創及共享經濟利益。德國聯邦政府基於該戰略計劃,提出智慧聯網倡議,及提供開放式創新平台,促進不同領域的合作及整合運用,將有助於產業價值及競爭力的提升,並提高國際間合作的機會。 我國為發展智慧聯網相關產業,曾推出包括「智慧辨識服務推動計畫」、「智慧聯網商區整合示範推動計畫」等相關應用服務整合及解決方案計畫,今年更陸續推出「亞洲‧矽谷推動方案」、「數位國家‧創新經濟發展方案」,藉以提高數位生活服務使用普及率,並以創新驅動產業升級轉型。