美國聯邦交易委員會(Federal Trade Commission,FTC)因應眾議院之要求,再次延展了紅旗規則(Red Flags Rule)之施行日,目前將由原先預定之2009年11月1日,延後至2010年6月1日施行。此規則最初預計於2008年11月1日施行,此次已是第四次延展。
所謂紅旗規則,原為「公平與正確信用交易法(Fair and Accurate Credit Transactions Act)」中之規定,依該法眾議院指示美國聯邦交易委員會及相關部門制定法規,用以規範金融機構及授信單位降低身分盜用之風險。基於此一指示,金融機構及授信單位必須研擬防止身分盜用的方案。詳言之,紅旗規則係要求凡管理使用包括性帳戶(covered account)者都應研擬並執行防止身分盜用之書面計劃。所謂的包括性帳戶係指:1.用於多次消費計算用途之帳戶,如信用卡帳戶、汽車貸款帳戶、手機帳戶、支票帳戶等;2.所有預期會產生身分盜用風險的帳戶,並不僅指於金融機構中所設立之帳戶。而前述應研擬之計畫將用以協助確認、偵測並解決身分盜用之行為。
由於只要用於支付計算,或有可能產生身分盜用風險之帳戶,均為包括性帳戶,而用於支付會計師款項之帳戶亦包含在內。惟美國會計師協會(American Institute of Certified Public Accountants, AICPA)要求FTC免除註冊會計師適用紅旗規則,該協會執行長Barry Melancon認為:「我們很在意紅旗規則的廣泛應用,因為我們並不認為當CPA之客戶付款時,會產生相當的身分冒用風險。」他指出該紅旗規則所帶來之負擔已超過其風險。AICPA並要求各州會計師協會去函對FTC表達排除適用之意見。而Melancon贊同FTC延後適用紅旗原則之決定,其並認為紅旗規則並無須廣泛運用於會計業,因為作為值得信賴的顧問,會計師對於其客戶應該都很熟悉,也會要求對身分資訊採取嚴格的隱私保護標準。
為了推動紅旗規則之適用,FTC已於紅旗規則之官方網站提供了該規則之適用綱領,並以座談會之方式對各團體進行運用之培訓。同時以出版企業之應用綱領,大量之文宣及宣導短片,對民眾提供諮詢服務等方式推廣紅旗規則。
而司法實務界對於此一規則之適用範圍亦開始表達其見解,在2009年10月30日,哥倫比亞地方法院判決律師業不適用紅旗規則。不過此次的延展施行公告並不會影響相關案件的進行及上訴流程,也不會影響其他聯邦部門對於金融機構及授信單位的監督。
Apple實施一方法,主要運用於iPhone手機作業系統上,增加手機警示功能(通知未接訊息特徵)。 AppleInsider發現Apple所申請的專利案,主要針對手機警示功能,與增進iPhone手機作業系統效能為主,其中著重於通知遺漏訊息(notifications of missed messages)及調整手機運用屬性偏好(application preferences)。其描述用戶者可運用手機介面上一通知儀表板(notification dashboard)顯示所有接收訊息的詳細資訊,如未接來電, SMS簡訊等。 目前iPhone手機在呈現像即時文字訊息或未接來電等資訊時,用戶者必須將螢幕鍵開鎖,指定回手機主畫面,並開啟特殊功能,以利取得接收到的文字訊息或語音信箱。 Apple新增通知資訊功能,可讓iPhone手機於開鎖(unlock)狀態下,在接獲到即時電子郵件或未接來電等相關訊息時,用戶者不需要將螢幕鍵開鎖,可直接於iPhone手機介面上滑動儀表板(bar),控制在正確的通知資訊位置,用戶者就可直接即時連接此內容,以減少開關鎖之頻率。AppleInsider指出Apple運用此通知服務,間接地指出允許iPhone手機可持續維持於上網之狀態。 AppleInsider指出Apple運用於iPhone手機介面的通知儀表板,主要複製Apple的Mac OS X儀表板之應用程式功能。 註:AppleInsider網站成立於1997年,為提供Apple相關即時資訊之入口網站。
英國股權式群眾募資簡介-以近期監管規則發展為中心 歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。