歐盟科學與新科技倫理委員會(European Group on Ethics in Science and New Technologies, EGE)在今(2009)年11月18日公布合成生物學(Synthetic Biology)公布相關之倫理、法制與社會議題之意見,其中指出合成生物學具有可大幅降低生技藥品生產成本的極大潛力,但也可能帶來的風險,故應予注意。 對很多人來說,合成生物學是一個相當新穎的概念,經濟合作發展組織(Organisation for Economic Co-operation and Development , OECD)在其所公布的2030生物經濟發展議程中,將其列為最具有發展潛力的新興生物技術之一,近來更被歐美先進國家視為生物技術產業的未來重點發展方向。 根據OECD的定義,所謂合成生物學,是以工程方法為基礎,以改進微生物的新興領域,此技術使設計與建構新生物元件(part)、裝置(device)及系統(system),及對於既存的自然生物系統,使其更具有使用性。合成生物學的目的,在於藉由設計細胞系統,使其具備特定功能,從而消除浪費細胞能量之非期待的產物,以增進生物效率。目前合成生物學與市場較為接近的案例,乃一種將青蒿(sweet wormwood herb)、細菌與酵素等基因、分子路徑(molecular pathway)作結合,製造出可以生產治療瘧疾(malaria)的青蒿酸之細菌,此項開發成功突破過去僅能透過植物青蒿獲得,並產量有限的瓶頸。 正由於看好和成生物學的發展潛力,美國、英國與歐盟都開始對此項技術可能帶來的倫理、法制與社會爭議進行評估,歐盟EGE更公布意見以作為未來訂定法規範時的參考。EGE在意見中表示合成生物學使用於能源技術、生物製藥、化學工業或材料科學等都深具前景,故建議歐盟執委會應對此技術發展給予支持,並在歐盟架構計畫下,以產業利用為前提,給予經費的支持;然也必須重視其ELSI問題,包括使用合成生物產品的安全性、對環境的長期影響、惡意使用之防免、專利與公共財的爭議等,為了解決此等問題,其也要求各會員國必須針對合成生物學的各種議題,加強與民眾、利害關係人及社會的對話。由於我國一直將生技產業視為發展重點,合成生物學關係著生技產業未來發展,其未來發展實不容為我國所忽略。
美國國家公路交通安全管理局公布車輛網路安全最佳實踐,呼籲業界遵循美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2022年9月9日公布2022年最新版本之當代車輛網路安全最佳實踐(Cybersecurity Best Practices for the Safety of Modern Vehicles),強化政府對先進聯網車輛網路安全之把關。 文件將網路安全實踐項目區分為「一般網路安全最佳實踐」及「車輛技術網路安全最佳實踐」兩塊,前者主要為公司整體組織網路安全文化與監管機制之建立;後者則偏重於技術性的建議內涵。 「一般網路安全最佳實踐」共有45項要點,核心概念為:公司應訂定明確的網路安全評估程序,由領導階層負責相關監督責任,定期執行網路安全之風險評估及第三方公正稽核,並對其所發現之風險弱點採取保護措施並持續監控,同時應妥善保存所有網路安全相關之紀錄文件,並鼓勵與車輛同業聯盟彼此分享學習經驗。對於組織成員應適當提供網路安全教育訓練。於產品設計時,應將產品使用者、售後服務維修商,以及可能的外接式電子設備所帶來之風險一併納入安全設計考量。 「車輛技術網路安全最佳實踐」共有25項,核心理念為:對於產品開發人員,應建立存取權限管理,避免有心人士濫用權限。產品所使用的加密技術應隨時更新,若車輛具備診斷功能,應慎防遭到不當利用,且應防止車輛所搭載之感測器遭到惡意干擾或改動,感測器所收集到之資料則應能免於網路攻擊或竊取。應特別注意無線網路設備、空中軟體更新(Over-the-air, OTA)以及公司作業軟體所產生之風險漏洞。 本文件屬於自願性質,無法律強制力。但NHTSA期望在現有的車輛產業網路安全標準上,例如國際標準組織與國際汽車工程師協會(International Standards Organization, ISO/SAE International, SAE)先前所訂定的車輛網路安全標準ISO/SAE 21434的基礎前提下,進一步提出政府對車輛網路安全要求的努力。
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。